
Tablicious for GNU Octave
version 0.4.5, July 2025

Andrew Janke

This manual is for Tablicious, version 0.4.5.

Copyright c© 2019, 2023, 2024 Andrew Janke

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modified versions.

i

Short Contents

1 Introduction . 1

2 Getting Started . 2
3 Table Representation . 3
4 Date and Time Representation . 5

5 Validation Functions . 8
6 Example Data Sets . 9
7 Missing Functionality . 10
8 API Reference . 11
9 Copying . 134

ii

Table of Contents

1 Introduction . 1

2 Getting Started . 2

3 Table Representation . 3
3.1 Table Construction . 3
3.2 Tables vs SQL . 3

4 Date and Time Representation 5
4.1 datetime Class . 5

4.1.1 Datenum Compatibility . 5
4.2 Time Zones . 6

4.2.1 Defined Time Zones . 7
4.3 Durations . 7

4.3.1 duration Class . 7
4.3.2 calendarDuration Class . 7

5 Validation Functions . 8

6 Example Data Sets . 9
6.1 Data Sets from R . 9

7 Missing Functionality . 10

8 API Reference . 11
8.1 API by Category . 11

8.1.1 Tables . 11
8.1.2 Strings and Categoricals . 11
8.1.3 Dates and Times . 12
8.1.4 Missing Data . 13
8.1.5 Validation Functions . 13
8.1.6 Miscellaneous . 14
8.1.7 Example Datasets . 15
8.1.8 Example Code . 15
8.1.9 Uncategorized . 15

8.2 API Alphabetically . 15
8.2.1 array2table . 15
8.2.2 caldays . 16
8.2.3 calendarDuration . 16

8.2.3.1 calendarDuration.calendarDuration 16

iii

8.2.3.2 calendarDuration.dispstrs . 16
8.2.3.3 calendarDuration.ismissing . 17
8.2.3.4 calendarDuration.isnan . 17
8.2.3.5 calendarDuration.minus . 17
8.2.3.6 calendarDuration.mtimes . 17
8.2.3.7 calendarDuration.plus . 17
8.2.3.8 calendarDuration.times . 17
8.2.3.9 calendarDuration.uminus . 18

8.2.4 calmonths . 18
8.2.5 calyears . 18
8.2.6 categorical . 18

8.2.6.1 categorical.addcats . 19
8.2.6.2 categorical.categorical . 19
8.2.6.3 categorical.categories . 19
8.2.6.4 categorical.cellstr . 20
8.2.6.5 categorical.dispstrs . 20
8.2.6.6 categorical.double . 20
8.2.6.7 categorical.iscategory . 20
8.2.6.8 categorical.ismissing . 20
8.2.6.9 categorical.isnanny . 20
8.2.6.10 categorical.isordinal . 21
8.2.6.11 categorical.isundefined . 21
8.2.6.12 categorical.mergecats . 21
8.2.6.13 categorical.missing . 21
8.2.6.14 categorical.removecats . 21
8.2.6.15 categorical.renamecats . 22
8.2.6.16 categorical.reordercats . 22
8.2.6.17 categorical.setcats . 22
8.2.6.18 categorical.squeezecats . 22
8.2.6.19 categorical.string . 22
8.2.6.20 categorical.summary . 22
8.2.6.21 categorical.undefined . 23

8.2.7 cell2table . 23
8.2.8 colvecfun . 23
8.2.9 contains . 23
8.2.10 datetime . 24

8.2.10.1 datetime.colon . 24
8.2.10.2 datetime.convertDatenumTimeZone 25
8.2.10.3 datetime.datenum . 25
8.2.10.4 datetime.datenum2posix . 25
8.2.10.5 datetime.datestr . 25
8.2.10.6 datetime.datestrs . 25
8.2.10.7 datetime.datestruct . 26
8.2.10.8 datetime.datetime . 26
8.2.10.9 datetime.datevec . 26
8.2.10.10 datetime.diff . 26
8.2.10.11 datetime.dispstrs . 26

iv

8.2.10.12 datetime.eq . 27
8.2.10.13 datetime.ge . 27
8.2.10.14 datetime.gmtime . 27
8.2.10.15 datetime.gt . 27
8.2.10.16 datetime.hms . 27
8.2.10.17 datetime.isbetween . 27
8.2.10.18 datetime.isnan . 28
8.2.10.19 datetime.isnat . 28
8.2.10.20 datetime.le . 28
8.2.10.21 datetime.linspace . 28
8.2.10.22 datetime.localtime . 28
8.2.10.23 datetime.lt . 29
8.2.10.24 datetime.minus . 29
8.2.10.25 datetime.NaT . 29
8.2.10.26 datetime.ne . 29
8.2.10.27 datetime.ofDatenum . 29
8.2.10.28 datetime.ofDatestruct . 30
8.2.10.29 datetime.plus . 30
8.2.10.30 datetime.posix2datenum . 30
8.2.10.31 datetime.posixtime . 30
8.2.10.32 datetime.proxyKeys . 30
8.2.10.33 datetime.timeofday . 31
8.2.10.34 datetime.week . 31
8.2.10.35 datetime.ymd . 31
8.2.10.36 datetime.ymdhms . 31

8.2.11 days . 31
8.2.12 discretize . 31
8.2.13 dispstrs . 32
8.2.14 duration . 32

8.2.14.1 duration.char . 32
8.2.14.2 duration.dispstrs . 33
8.2.14.3 duration.hours . 33
8.2.14.4 duration.linspace . 33
8.2.14.5 duration.milliseconds . 33
8.2.14.6 duration.minutes . 33
8.2.14.7 duration.ofDays . 33
8.2.14.8 duration.seconds . 34
8.2.14.9 duration.years . 34

8.2.15 eqn . 34
8.2.16 head . 34
8.2.17 hours . 35
8.2.18 iscalendarduration . 35
8.2.19 iscategorical . 35
8.2.20 isdatetime . 35
8.2.21 isduration . 35
8.2.22 isfile . 35
8.2.23 isfolder . 35

v

8.2.24 isnanny . 36
8.2.25 istable . 36
8.2.26 istabular . 36
8.2.27 istimetable . 36
8.2.28 localdate . 37

8.2.28.1 localdate.datenum . 37
8.2.28.2 localdate.datestr . 37
8.2.28.3 localdate.datestrs . 37
8.2.28.4 localdate.datestruct . 37
8.2.28.5 localdate.dispstrs . 38
8.2.28.6 localdate.isnan . 38
8.2.28.7 localdate.isnat . 38
8.2.28.8 localdate.localdate . 38
8.2.28.9 localdate.NaT . 38
8.2.28.10 localdate.posixtime . 39
8.2.28.11 localdate.ymd . 39

8.2.29 milliseconds . 39
8.2.30 minutes . 39
8.2.31 missing . 39

8.2.31.1 missing.dispstrs . 40
8.2.31.2 missing.ismissing . 40
8.2.31.3 missing.isnan . 40
8.2.31.4 missing.isnanny . 40
8.2.31.5 missing.missing . 40

8.2.32 mustBeA . 40
8.2.33 mustBeCellstr . 40
8.2.34 mustBeCharvec . 40
8.2.35 mustBeFinite . 40
8.2.36 mustBeInteger . 41
8.2.37 mustBeMember . 41
8.2.38 mustBeNonempty . 41
8.2.39 mustBeNumeric . 41
8.2.40 mustBeReal . 41
8.2.41 mustBeSameSize . 41
8.2.42 mustBeScalar . 41
8.2.43 mustBeScalarLogical . 41
8.2.44 mustBeVector . 41
8.2.45 NaC . 41
8.2.46 NaS . 42
8.2.47 NaT . 42
8.2.48 pp . 42
8.2.49 scalarexpand . 42
8.2.50 seconds . 43
8.2.51 size2str . 43
8.2.52 splitapply . 43
8.2.53 string . 44

8.2.53.1 string.cell . 45

vi

8.2.53.2 string.cellstr . 45
8.2.53.3 string.char . 45
8.2.53.4 string.cmp . 45
8.2.53.5 string.decode . 45
8.2.53.6 string.dispstrs . 46
8.2.53.7 string.empty . 46
8.2.53.8 string.encode . 46
8.2.53.9 string.endsWith . 46
8.2.53.10 string.erase . 46
8.2.53.11 string.ismissing . 47
8.2.53.12 string.isnanny . 47
8.2.53.13 string.isstring . 47
8.2.53.14 string.lower . 47
8.2.53.15 string.missing . 47
8.2.53.16 string.plus . 47
8.2.53.17 string.regexprep . 48
8.2.53.18 string.reverse . 48
8.2.53.19 string.reverse bytes . 48
8.2.53.20 string.startsWith . 48
8.2.53.21 string.strcat . 48
8.2.53.22 string.strcmp . 49
8.2.53.23 string.strfind . 49
8.2.53.24 string.string . 49
8.2.53.25 string.strlength . 49
8.2.53.26 string.strlength bytes . 50
8.2.53.27 string.strrep . 50
8.2.53.28 string.upper . 50

8.2.54 struct2table . 50
8.2.55 table . 51

8.2.55.1 table.addvars . 52
8.2.55.2 table.antijoin . 52
8.2.55.3 table.cartesian . 52
8.2.55.4 table.convertvars . 52
8.2.55.5 table.findgroups . 53
8.2.55.6 table.getvar . 53
8.2.55.7 table.getvars . 53
8.2.55.8 table.groupby . 53
8.2.55.9 table.height . 54
8.2.55.10 table.horzcat . 54
8.2.55.11 table.innerjoin . 54
8.2.55.12 table.intersect . 54
8.2.55.13 table.isempty . 54
8.2.55.14 table.ismember . 55
8.2.55.15 table.ismissing . 55
8.2.55.16 table.istable . 55
8.2.55.17 table.join . 55
8.2.55.18 table.mergevars . 55

vii

8.2.55.19 table.movevars . 56
8.2.55.20 table.ndims . 56
8.2.55.21 table.numel . 56
8.2.55.22 table.outerfillvals . 56
8.2.55.23 table.outerjoin . 56
8.2.55.24 table.prettyprint . 57
8.2.55.25 table.realjoin . 57
8.2.55.26 table.removevars . 57
8.2.55.27 table.renamevars . 57
8.2.55.28 table.repelem . 58
8.2.55.29 table.repmat . 58
8.2.55.30 table.restrict . 58
8.2.55.31 table.rowfun . 59
8.2.55.32 table.rows2vars . 60
8.2.55.33 table.semijoin . 60
8.2.55.34 table.setdiff . 60
8.2.55.35 table.setDimensionNames . 61
8.2.55.36 table.setRowNames . 61
8.2.55.37 table.setvar . 61
8.2.55.38 table.setVariableNames . 61
8.2.55.39 table.setxor . 62
8.2.55.40 table.size . 62
8.2.55.41 table.splitapply . 62
8.2.55.42 table.splitvars . 62
8.2.55.43 table.squeeze . 62
8.2.55.44 table.stack . 63
8.2.55.45 table.summary . 63
8.2.55.46 table.table . 63
8.2.55.47 table.table2array . 64
8.2.55.48 table.table2cell . 64
8.2.55.49 table.table2struct . 64
8.2.55.50 table.union . 64
8.2.55.51 table.varfun . 64
8.2.55.52 table.varnames . 64
8.2.55.53 table.vertcat . 65
8.2.55.54 table.width . 65

8.2.56 tableOuterFillValue . 65
8.2.57 tail . 65
8.2.58 tblish.dataset . 65

8.2.58.1 tblish.dataset.airmiles . 66
8.2.58.2 tblish.dataset.AirPassengers . 66
8.2.58.3 tblish.dataset.airquality . 66
8.2.58.4 tblish.dataset.anscombe . 68
8.2.58.5 tblish.dataset.attenu . 69
8.2.58.6 tblish.dataset.attitude . 69
8.2.58.7 tblish.dataset.austres . 70
8.2.58.8 tblish.dataset.beavers . 71

viii

8.2.58.9 tblish.dataset.BJsales . 71
8.2.58.10 tblish.dataset.BOD . 72
8.2.58.11 tblish.dataset.cars . 72
8.2.58.12 tblish.dataset.ChickWeight . 74
8.2.58.13 tblish.dataset.chickwts . 74
8.2.58.14 tblish.dataset.co2 . 75
8.2.58.15 tblish.dataset.crimtab . 76
8.2.58.16 tblish.dataset.cupcake . 77
8.2.58.17 tblish.dataset.discoveries . 78
8.2.58.18 tblish.dataset.DNase . 78
8.2.58.19 tblish.dataset.esoph . 79
8.2.58.20 tblish.dataset.euro . 80
8.2.58.21 tblish.dataset.eurodist . 81
8.2.58.22 tblish.dataset.EuStockMarkets . 81
8.2.58.23 tblish.dataset.faithful . 82
8.2.58.24 tblish.dataset.Formaldehyde . 83
8.2.58.25 tblish.dataset.freeny . 84
8.2.58.26 tblish.dataset.HairEyeColor . 85
8.2.58.27 tblish.dataset.Harman23cor . 86
8.2.58.28 tblish.dataset.Harman74cor . 86
8.2.58.29 tblish.dataset.Indometh . 87
8.2.58.30 tblish.dataset.infert . 88
8.2.58.31 tblish.dataset.InsectSprays . 88
8.2.58.32 tblish.dataset.iris . 89
8.2.58.33 tblish.dataset.islands . 90
8.2.58.34 tblish.dataset.JohnsonJohnson . 90
8.2.58.35 tblish.dataset.LakeHuron . 91
8.2.58.36 tblish.dataset.lh . 91
8.2.58.37 tblish.dataset.LifeCycleSavings . 92
8.2.58.38 tblish.dataset.Loblolly . 93
8.2.58.39 tblish.dataset.longley . 94
8.2.58.40 tblish.dataset.lynx . 95
8.2.58.41 tblish.dataset.morley . 95
8.2.58.42 tblish.dataset.mtcars . 96
8.2.58.43 tblish.dataset.nhtemp . 97
8.2.58.44 tblish.dataset.Nile . 98
8.2.58.45 tblish.dataset.nottem . 98
8.2.58.46 tblish.dataset.npk . 99
8.2.58.47 tblish.dataset.occupationalStatus 99
8.2.58.48 tblish.dataset.Orange . 100
8.2.58.49 tblish.dataset.OrchardSprays . 101
8.2.58.50 tblish.dataset.PlantGrowth . 101
8.2.58.51 tblish.dataset.precip . 102
8.2.58.52 tblish.dataset.presidents . 102
8.2.58.53 tblish.dataset.pressure . 103
8.2.58.54 tblish.dataset.Puromycin . 104
8.2.58.55 tblish.dataset.quakes . 105

ix

8.2.58.56 tblish.dataset.randu . 106
8.2.58.57 tblish.dataset.rivers . 106
8.2.58.58 tblish.dataset.rock . 107
8.2.58.59 tblish.dataset.sleep . 108
8.2.58.60 tblish.dataset.stackloss . 108
8.2.58.61 tblish.dataset.state . 109
8.2.58.62 tblish.dataset.sunspot month . 110
8.2.58.63 tblish.dataset.sunspot year . 111
8.2.58.64 tblish.dataset.sunspots . 111
8.2.58.65 tblish.dataset.swiss . 112
8.2.58.66 tblish.dataset.Theoph . 113
8.2.58.67 tblish.dataset.Titanic . 114
8.2.58.68 tblish.dataset.ToothGrowth . 115
8.2.58.69 tblish.dataset.treering . 116
8.2.58.70 tblish.dataset.trees . 116
8.2.58.71 tblish.dataset.UCBAdmissions . 117
8.2.58.72 tblish.dataset.UKDriverDeaths . 118
8.2.58.73 tblish.dataset.UKgas . 119
8.2.58.74 tblish.dataset.UKLungDeaths . 120
8.2.58.75 tblish.dataset.USAccDeaths . 121
8.2.58.76 tblish.dataset.USArrests . 121
8.2.58.77 tblish.dataset.USJudgeRatings . 122
8.2.58.78 tblish.dataset.USPersonalExpenditure 123
8.2.58.79 tblish.dataset.uspop . 123
8.2.58.80 tblish.dataset.VADeaths . 124
8.2.58.81 tblish.dataset.volcano . 125
8.2.58.82 tblish.dataset.warpbreaks . 125
8.2.58.83 tblish.dataset.women . 126
8.2.58.84 tblish.dataset.WorldPhones . 127
8.2.58.85 tblish.dataset.WWWusage . 127
8.2.58.86 tblish.dataset.zCO2 . 128

8.2.59 tblish.datasets . 129
8.2.59.1 datasets.description . 129
8.2.59.2 datasets.list . 129
8.2.59.3 datasets.load . 129

8.2.60 tblish.evalWithTableVars . 129
8.2.61 tblish.examples.coplot . 130
8.2.62 tblish.examples.plot pairs . 130
8.2.63 tblish.examples.SpDb . 131
8.2.64 tblish.sizeof2 . 131
8.2.65 tblish.table.grpstats . 132
8.2.66 timezones . 132
8.2.67 todatetime . 132
8.2.68 vartype . 133
8.2.69 vecfun . 133
8.2.70 years . 133

x

9 Copying . 134
9.1 Package Copyright . 134
9.2 Manual Copyright . 134

1

1 Introduction

Time is an illusion. Lunchtime doubly so.
—Douglas Adams

This is the manual for the Tablicious package version 0.4.5 for GNU Octave.

Tablicious provides somewhat-Matlab-compatible tabular data and date/time support
for GNU Octave. This includes a table class with support for filtering and join operations;
datetime, duration, and related classes; Missing Data support; string and categorical

data types; and other miscellaneous things.

This document is a work in progress. You are invited to help improve it and submit
patches.

Tablicious’s classes are designed to be convenient to use while still being efficient. The
data representations used by Tablicious are designed to be efficient and suitable for working
with large-ish data sets. A “large-ish” data set is one that can have millions of elements or
rows, but still fits in main computer memory. Tablicious’s main relational and arithmetic
operations are all implemented using vectorized operations on primitive Octave data types.

Tablicious was written by Andrew Janke <floss@apjanke.net>. Support can
be found on the Tablicious project GitHub page (https://github.com/apjanke/
octave-tablicious).

mailto:floss@apjanke.net
https://github.com/apjanke/octave-tablicious
https://github.com/apjanke/octave-tablicious

2

2 Getting Started

The easiest way to obtain Tablicious is by using Octave’s pkg package manager. To install
the development prerelease of Tablicious, run this in Octave:

pkg install https://github.com/apjanke/octave-tablicious/releases/download/v0.4.5/tablicious-0.4.5.tar.gz

(Check the releases page at https://github.com/apjanke/octave-tablicious/

releases to find out what the actual latest release number is.)

For development, you can obtain the source code for Tablicious from the project repo
on GitHub at https://github.com/apjanke/octave-tablicious. Make a local clone of
the repo. Then add the inst directory in the repo to your Octave path.

https://github.com/apjanke/octave-tablicious/releases
https://github.com/apjanke/octave-tablicious/releases
https://github.com/apjanke/octave-tablicious

3

3 Table Representation

Tablicious provides the table class for representing tabular data.

A table is an array object that represents a tabular data structure. It holds multiple
named “variables”, each of which is a column vector, or a 2-D matrix whose rows are read
as records.

A table is composed of multiple “variables”, each with a name, which all have the
same number of rows. (A table variable is like a “column” in SQL tables or in R or
Python/pandas dataframes. Whenever you read “variable” here, think “column”.) Taken
together, the i-th element or row of each variable compose a single record or observation.

Tables are good ways of arranging data if you have data that would otherwise be stored
in a few separate variables which all need to be kept in the same shape and order, especially
if you might want to do element-wise comparisons involving two or more of those variables.
That’s basically all a table is: it holds a collection of variables, and makes sure they are
all kept aligned and ordered in the same way.

Tables are a lot like SQL tables or result sets, and are based on the same relational
algebra theory that SQL is. Many common, even powerful, SQL operations can be done in
Octave using table arrays. It’s like having your own in-memory SQL engine.

3.1 Table Construction

There are two main ways to construct a table array: build one up by combining multiple
variables together, or convert an existing tabular-organized array into a table.

To build an array from multiple variables, use the table(...) constructor, passing in
all of your variables as separate inputs. It takes any number of inputs. Each input becomes
a table variable in the new table object. If you pass your constructor inputs directly
from variables, it automatically picks up their names and uses them as the table variable
names. Otherwise, if you’re using more complex expressions, you’ll need to supply the
'VariableNames' option.

To convert a tabular-organized array of another type into a table, use the conversion
functions like array2table, struct2table and cell2table. array2table and cell2table
take each column of the input array and turn it into a separate table variable in the resulting
table. struct2table takes the fields of a struct and puts them into table variables.

3.2 Tables vs SQL

Here’s a table (ha!) of what SQL and relational algebar operations correspond to what
Octave table operations.

In this table, t is a variable holding a table array, and ix is some indexing expression.

SQL Relational Octave table

SELECT PROJECT subsetvars, t(:,ix)
WHERE RESTRICT subsetrows, t(ix,:)
INNER JOIN JOIN innerjoin

OUTER JOIN OUTER JOIN outerjoin

FROM table1, table2, ... Cartesian product cartesian

GROUP BY SUMMARIZE groupby

Chapter 3: Table Representation 4

DISTINCT (automatic) unique(t)

Note that there is one big difference between relational algebra and SQL & Octave
table: Relations in relational algebra are sets, not lists. There are no duplicate rows in
relational algebra, and there is no ordering. So every operation there does an implicit
DISTINCT/unique() on its results, and there‘s no ORDER BY/sort(). This is not the case
in SQL or Octave table.

Note for users coming from Matlab: Matlab does not provide a general groupby function.
Instead, you have to variously use rowfun, grpstats, groupsummary, and manual code to
accomplish “group by” operations.

Note: I wrote this based on my understanding of relational algebra from reading C. J.
Date books. Other people’s understanding and terminology may differ. - apjanke

5

4 Date and Time Representation

Tablicious provides the datetime class for representing points in time.

There’s also duration and calendarDuration for representing periods or durations of
time. Like vector quantities along the time line, as opposed to datetime being a point
along the time line.

4.1 datetime Class

A datetime is an array object that represents points in time in the familiar Gregorian
calendar.

This is an attempt to reproduce the functionality of Matlab’s datetime. It also contains
some Octave-specific extensions.

The underlying representation is that of a datenum (a double containing the number of
days since the Matlab epoch), but encapsulating it in an object provides several benefits:
friendly human-readable display, type safety, automatic type conversion, and time zone
support. In addition to the underlying datenum array, a datetime inclues an optional
TimeZone property indicating what time zone the datetimes are in.

So, basically, a datetime is an object wrapper around a datenum array, plus time zone
support.

4.1.1 Datenum Compatibility

While the underlying data representation of datetime is compatible with (in fact, identical
to) that of datenums, you cannot directly combine them via assignment, concatenation, or
most arithmetic operations.

This is because of the signature of the datetime constructor. When combining objects
and primitive types like double, the primitive type is promoted to an object by calling the
other object’s one-argument constructor on it. However, the one-argument numeric-input
consstructor for datetime does not accept datenums: it interprets its input as datevecs
instead. This is due to a design decision on Matlab’s part; for compatibility, Octave does
not alter that interface.

To combine datetimes with datenums, you can convert the datenums to datetimes
by calling datetime.ofDatenum or datetime(x, 'ConvertFrom', 'datenum'), or you can
convert the datetimes to datenums by accessing its dnums field with x.dnums.

Examples:

dt = datetime('2011-03-04')

dn = datenum('2017-01-01')

[dt dn]

⇒ error: datenum: expected date vector containing [YEAR, MONTH, DAY, HOUR, MINUTE, SECOND]

[dt datetime.ofDatenum(dn)]

⇒ 04-Mar-2011 01-Jan-2017

Also, if you have a zoned datetime, you can’t combine it with a datenum, because
datenums do not carry time zone information.

Chapter 4: Date and Time Representation 6

4.2 Time Zones

Tablicious has support for representing dates in time zones and for converting between time
zones.

A datetime may be "zoned" or "zoneless". A zoneless datetime does not have a time
zone associated with it. This is represented by an empty TimeZone property on the datetime
object. A zoneless datetime represents the local time in some unknown time zone, and
assumes a continuous time scale (no DST shifts).

A zoned datetime is associated with a time zone. It is represented by having the time
zone’s IANA zone identifier (e.g. 'UTC' or 'America/New_York') in its TimeZone property.
A zoned datetime represents the local time in that time zone.

By default, the datetime constructor creates unzoned datetimes. To make a zoned
datetime, either pass the 'TimeZone' option to the constructor, or set the TimeZone prop-
erty after object creation. Setting the TimeZone property on a zoneless datetime declares
that it’s a local time in that time zone. Setting the TimeZone property on a zoned datetime

turns it back into a zoneless datetime without changing the local time it represents.

You can tell a zoned from a zoneless time zone in the object display because the time
zone is included for zoned datetimes.

% Create an unzoned datetime

d = datetime('2011-03-04 06:00:00')

⇒ 04-Mar-2011 06:00:00

% Create a zoned datetime

d_ny = datetime('2011-03-04 06:00:00', 'TimeZone', 'America/New_York')

⇒ 04-Mar-2011 06:00:00 America/New_York

% This is equivalent

d_ny = datetime('2011-03-04 06:00:00');

d_ny.TimeZone = 'America/New_York'

⇒ 04-Mar-2011 06:00:00 America/New_York

% Convert it to Chicago time

d_chi.TimeZone = 'America/Chicago'

⇒ 04-Mar-2011 05:00:00 America/Chicago

When you combine two zoned datetimes via concatenation, assignment, or arithmetic,
if their time zones differ, they are converted to the time zone of the left-hand input.

d_ny = datetime('2011-03-04 06:00:00', 'TimeZone', 'America/New_York')

d_la = datetime('2011-03-04 06:00:00', 'TimeZone', 'America/Los_Angeles')

d_la - d_ny

⇒ 03:00:00

You cannot combine a zoned and an unzoned datetime. This results in an error being
raised.

Warning: Normalization of "nonexistent" times (like between 02:00 and 03:00
on a "spring forward" DST change day) is not implemented yet. The results of
converting a zoneless local time into a time zone where that local time did not
exist are currently undefined.

Chapter 4: Date and Time Representation 7

4.2.1 Defined Time Zones

Tablicious’s time zone data is drawn from the IANA Time Zone Database (https://www.
iana.org/time-zones), also known as the “Olson Database”. Tablicious includes a copy
of this database in its distribution so it can work on Windows, which does not supply it
like Unix systems do.

You can use the timezones function to list the time zones known to Tablicious. These
will be all the time zones in the IANA database on your system (for Linux and macOS) or
in the IANA time zone database redistributed with Tablicious (for Windows).

Note: The IANA Time Zone Database only covers dates from about the year
1880 to 2038. Converting time zones for datetimes outside that range is cur-
rently unimplemented. (Tablicious needs to add support for proleptic POSIX
time zone rules, which are used to govern behavior outside that date range.)

4.3 Durations

4.3.1 duration Class

A duration represents a period of time in fixed-length seconds (or minutes, hours, or
whatever you want to measure it in.)

A duration has a resolution of about a nanosecond for typical dates. The underlying
representation is a double representing the number of days elapsed, similar to a datenum,
except it’s interpreted as relative to some other reference point you provide, instead of being
relative to the Matlab/Octave epoch.

You can add or subtract a duration to a datetime to get another datetime. You can
also add or subtract durations to each other.

4.3.2 calendarDuration Class

A calendarDuration represents a period of time in variable-length calendar components.
For example, years and months can have varying numbers of days, and days in time zones
with Daylight Saving Time have varying numbers of hours. A calendarDuration does
arithmetic with "whole" calendar periods.

calendarDurations and durations cannot be directly combined, because they are not
semantically equivalent. (This may be relaxed in the future to allow durations to be
interpreted as numbers of days when combined with calendarDurations.)

d = datetime('2011-03-04 00:00:00')

⇒ 04-Mar-2011

cdur = calendarDuration(1, 3, 0)

⇒ 1y 3mo

d2 = d + cdur

⇒ 04-Jun-2012

https://www.iana.org/time-zones
https://www.iana.org/time-zones

8

5 Validation Functions

Tablicious provides several validation functions which can be used to check properties of
function arguments, variables, object properties, and other expressions. These can be used
to express invariants in your program and catch problems due to input errors, incorrect
function usage, or other bugs.

These validation functions are named following the pattern mustBeXxx, where Xxx is
some property of the input it is testing. Validation functions may check the type, size, or
other aspects of their inputs.

The most common place for validation functions to be used will probably be at the
beginning of functions, to check the input arguments and ensure that the contract of the
function is not being violated. If in the future Octave gains the ability to declaratively
express object property constraints, they will also be of use there.

Be careful not to get too aggressive with the use of validation functions: while using
them can make sure invariants are followed and your program is correct, they also reduce
the code’s ability to make use of duck typing, reducing its flexibility. Whether you want to
make this trade-off is a design decision you will have to consider.

When a validation function’s condition is violated, it raises an error that includes a de-
scription of the violation in the error message. This message will include a label for the input
that describes what is being tested. By default, this label is initialized with inputname(),
so when you are calling a validator on a function argument or variable, you will generally not
need to supply a label. But if you’re calling it on an object property or an expression more
complex than a simple variable reference, the validator cannot automatically detect the
input name for use in the label. In this case, make use of the optional trailing argument(s)
to the functions to manually supply a label for the value being tested.

% Validation of a simple variable does not need a label

mustBeScalar (x);

% Validation of a field or property reference does need a label

mustBeScalar (this.foo, 'this.foo');

9

6 Example Data Sets

Tablicious comes with several example data sets that you can use to explore how its functions
and objects work. These are accessed through the tblish.datasets and tblish.dataset

classes.

To see a list of the available data sets, run tblish.datasets.list(). Then to load one
of the example data sets, run tblish.datasets.load('examplename'). For example:

tblish.datasets.list

t = tblish.datasets.load('cupcake')

You can also load it by calling tblish.dataset.<name>. This does the same thing. For
example:

t = tblish.dataset.cupcake

When you load a data set, it either returns all its data in a single variable (if you capture
it), or loads its data into one or more variables in your workspace (if you call it with no
outputs).

Each example data set comes with help text that describes the data set and pro-
vides examples of how to work with it. This help is found using the doc command on
tblish.dataset.<name>, where <name> is the name of the data set.

For example:

doc tblish.dataset.cupcake

(The command help tblish.dataset.<name> ought to work too, but it currently
doesn’t. This may be due to an issue with Octave’s help command.)

6.1 Data Sets from R

Many of Tablicious’ example data sets are based on the example datasets found in R’s
datasets package. R can be found at https://www.r-project.org/, and documentation
for its datasets is at https://rdrr.io/r/datasets/datasets-package.html. Thanks
to the R developers for producing the original data sets here.

Tablicious’ examples’ code tries to replicate the R examples, so it can be useful to
compare the two of them if you are moving from one language to another.

Core Octave currently lacks some of the plotting features found in the R examples, such
as LOWESS smoothing and linear model characteristic plots, so you will just find “TODO”
placeholders for these in Tablicious’ example code.

https://www.r-project.org/
https://rdrr.io/r/datasets/datasets-package.html

10

7 Missing Functionality

Tablicious is based on Matlab’s table and date/time APIs and supports some of their major
functionality. But not all of it is implemented yet. The missing parts are currently:

• File I/O like readtable() and writetable()

• summary() categorical

• Assignment to table variables using .-indexing

• timetable

• POSIX time zone support for years outside the IANA time zone database coverage

• Week-of-year (ISO calendar) calculations

• Various 'ConvertFrom' forms for datetime and duration constructors

• Support for LDML formatting for datetime

• Various functions:

• between

• caldiff

• dateshift

• week

• isdst, isweekend

• calendarDuration.split

• duration.Format support

• Moving window methods in fillmissing

• UTCOffset and DSTOffset fields in the output of timezones()

• Plotting support

It is the author’s hope that many these will be implemented some day.

These areas of missing functionality are tracked on the Tablicious issue tracker at
https://github.com/apjanke/octave-tablicious/issues and https://github.

com/users/apjanke/projects/3.

https://github.com/apjanke/octave-tablicious/issues
https://github.com/users/apjanke/projects/3
https://github.com/users/apjanke/projects/3

11

8 API Reference

8.1 API by Category

8.1.1 Tables

table Tabular data array containing multiple columnar variables.

See Section 8.2.55 [table], page 51.

array2table
Convert an array to a table.

See Section 8.2.1 [array2table], page 15.

cell2table Convert a cell array to a table.

See Section 8.2.7 [cell2table], page 23.

struct2table
Convert struct to a table.

See Section 8.2.54 [struct2table], page 50.

tableOuterFillValue
See Section 8.2.56 [tableOuterFillValue], page 65.

vartype Filter by variable type for use in suscripting.

See Section 8.2.68 [vartype], page 133.

istable True if input is a ‘table’ array or other table-like type, false otherwise.

See Section 8.2.25 [istable], page 36.

istimetable
True if input is a ‘timetable’ array or other timetable-like type, false otherwise.

See Section 8.2.27 [istimetable], page 36.

istabular True if input is eitehr a ‘table’ or ‘timetable’ array, or an object like them.

See Section 8.2.26 [istabular], page 36.

tblish.evalWithTableVars
Evaluate an expression against a table array’s variables.

See Section 8.2.60 [tblish.evalWithTableVars], page 129.

tblish.table.grpstats
Statistics by group for a table array.

See Section 8.2.65 [tblish.table.grpstats], page 132.

8.1.2 Strings and Categoricals

string A string array of Unicode strings.

See Section 8.2.53 [string], page 44.

NaS “Not-a-String".

See Section 8.2.46 [NaS], page 42.

Chapter 8: API Reference 12

contains Test if strings contain a pattern.

See Section 8.2.9 [contains], page 23.

dispstrs Display strings for array.

See Section 8.2.13 [dispstrs], page 32.

categorical
Categorical variable array.

See Section 8.2.6 [categorical], page 18.

iscategorical
True if input is a ‘categorical’ array, false otherwise.

See Section 8.2.19 [iscategorical], page 35.

NaC “Not-a-Categorical".

See Section 8.2.45 [NaC], page 41.

discretize Group data into discrete bins or categories.

See Section 8.2.12 [discretize], page 31.

8.1.3 Dates and Times

datetime Represents points in time using the Gregorian calendar.

See Section 8.2.10 [datetime], page 24.

NaT “Not-a-Time”.

See Section 8.2.47 [NaT], page 42.

todatetime
Convert input to a Tablicious datetime array, with convenient interface.

See Section 8.2.67 [todatetime], page 132.

localdate Represents a complete day using the Gregorian calendar.

See Section 8.2.28 [localdate], page 37.

isdatetime True if input is a ‘datetime’ array, false otherwise.

See Section 8.2.20 [isdatetime], page 35.

calendarDuration
Durations of time using variable-length calendar periods, such as days, months,
and years, which may vary in length over time.

See Section 8.2.3 [calendarDuration], page 16.

iscalendarduration
True if input is a ‘calendarDuration’ array, false otherwise.

See Section 8.2.18 [iscalendarduration], page 35.

calmonths Create a ‘calendarDuration’ that is a given number of calendar months long.

See Section 8.2.4 [calmonths], page 18.

calyears Construct a ‘calendarDuration’ a given number of years long.

See Section 8.2.5 [calyears], page 18.

Chapter 8: API Reference 13

days Duration in days.

See Section 8.2.11 [days], page 31.

duration Represents durations or periods of time as an amount of fixed-length time (i.e.

See Section 8.2.14 [duration], page 32.

hours Create a ‘duration’ X hours long, or get the hours in a ‘duration’ X.

See Section 8.2.17 [hours], page 35.

isduration True if input is a ‘duration’ array, false otherwise.

See Section 8.2.21 [isduration], page 35.

milliseconds
Create a ‘duration’ X milliseconds long, or get the milliseconds in a ‘duration’
X.

See Section 8.2.29 [milliseconds], page 39.

minutes Create a ‘duration’ X hours long, or get the hours in a ‘duration’ X.

See Section 8.2.30 [minutes], page 39.

seconds Create a ‘duration’ X seconds long, or get the seconds in a ‘duration’ X.

See Section 8.2.50 [seconds], page 43.

timezones List all the time zones defined on this system.

See Section 8.2.66 [timezones], page 132.

years Create a ‘duration’ X years long, or get the years in a ‘duration’ X.

See Section 8.2.70 [years], page 133.

8.1.4 Missing Data

missing Generic auto-converting missing value.

See Section 8.2.31 [missing], page 39.

isnanny Test if elements are NaN or NaN-like

See Section 8.2.24 [isnanny], page 36.

eqn Determine element-wise equality, treating NaNs as equal

See Section 8.2.15 [eqn], page 34.

8.1.5 Validation Functions

mustBeA

See Section 8.2.32 [mustBeA], page 40.

mustBeCellstr
See Section 8.2.33 [mustBeCellstr], page 40.

mustBeCharvec
See Section 8.2.34 [mustBeCharvec], page 40.

mustBeFinite
See Section 8.2.35 [mustBeFinite], page 40.

Chapter 8: API Reference 14

mustBeInteger
See Section 8.2.36 [mustBeInteger], page 41.

mustBeMember
See Section 8.2.37 [mustBeMember], page 41.

mustBeNonempty
See Section 8.2.38 [mustBeNonempty], page 41.

mustBeNumeric
See Section 8.2.39 [mustBeNumeric], page 41.

mustBeReal
See Section 8.2.40 [mustBeReal], page 41.

mustBeSameSize
See Section 8.2.41 [mustBeSameSize], page 41.

mustBeScalar
See Section 8.2.42 [mustBeScalar], page 41.

mustBeScalarLogical
See Section 8.2.43 [mustBeScalarLogical], page 41.

mustBeVector
See Section 8.2.44 [mustBeVector], page 41.

8.1.6 Miscellaneous

colvecfun Apply a function to column vectors in array.

See Section 8.2.8 [colvecfun], page 23.

dispstrs Display strings for array.

See Section 8.2.13 [dispstrs], page 32.

head Get first K rows of an array.

See Section 8.2.16 [head], page 34.

isfile

See Section 8.2.22 [isfile], page 35.

isfolder

See Section 8.2.23 [isfolder], page 35.

pp Alias for prettyprint, for interactive use.

See Section 8.2.48 [pp], page 42.

scalarexpand
Expand scalar inputs to match size of non-scalar inputs.

See Section 8.2.49 [scalarexpand], page 42.

size2str Format an array size for display.

See Section 8.2.51 [size2str], page 43.

Chapter 8: API Reference 15

splitapply Split data into groups and apply function.

See Section 8.2.52 [splitapply], page 43.

tail Get last K rows of an array.

See Section 8.2.57 [tail], page 65.

vecfun Apply function to vectors in array along arbitrary dimension.

See Section 8.2.69 [vecfun], page 133.

tblish.sizeof2
Approximate size of an array in bytes, with object support.

See Section 8.2.64 [tblish.sizeof2], page 131.

8.1.7 Example Datasets

tblish.datasets
Example dataset collection.

See Section 8.2.59 [tblish.datasets], page 129.

tblish.dataset
The ‘tblish.dataset’ class provides convenient access to the various datasets
included with Tablicious.

See Section 8.2.58 [tblish.dataset], page 65.

8.1.8 Example Code

tblish.examples.coplot
Conditioning plot.

See Section 8.2.61 [tblish.examples.coplot], page 130.

tblish.examples.plot pairs
Plot pairs of variables against each other.

See Section 8.2.62 [tblish.examples.plot pairs], page 130.

tblish.examples.SpDb
The classic Suppliers-Parts example database.

See Section 8.2.63 [tblish.examples.SpDb], page 131.

8.1.9 Uncategorized

caldays Create a ‘calendarDuration’ that is a given number of calendar days long.

See Section 8.2.2 [caldays], page 16.

8.2 API Alphabetically

8.2.1 array2table

[Function]out = array2table (c)
[Function]out = array2table (..., 'VariableNames', VariableNames)

Chapter 8: API Reference 16

[Function]out = array2table (..., 'RowNames', RowNames)
Convert an array to a table.

Converts a 2-D array to a table, with columns in the array becoming variables in the
output table. This is typically used on numeric arrays, but it can be applied to any
type of array.

You may not want to use this on cell arrays, though, because you will end up with a ta-
ble that has all its variables of type cell. If you use cell2table instead, columns of the
cell array which can be condensed into primitive arrays will be. With array2table,
they won’t be.

See also: Section 8.2.7 [cell2table], page 23, Section 8.2.55 [table], page 51, Sec-
tion 8.2.54 [struct2table], page 50,

8.2.2 caldays

[Function File]out = caldays (x)
Create a calendarDuration that is a given number of calendar days long.

Input x is a numeric array specifying the number of calendar days.

This is a shorthand alternative to calling the calendarDuration constructor with
calendarDuration(0, 0, x).

Returns a new calendarDuration object of the same size as x.

See Section 8.2.3 [calendarDuration], page 16.

8.2.3 calendarDuration

[Class]calendarDuration
Durations of time using variable-length calendar periods, such as days, months, and
years, which may vary in length over time. (For example, a calendar month may have
28, 30, or 31 days.)

[Instance Variable of calendarDuration]char Format
The format to display this calendarDuration in. Currently unsupported.

This is a single value that applies to the whole array.

8.2.3.1 calendarDuration.calendarDuration

[Constructor]obj = calendarDuration ()
Constructs a new scalar calendarDuration of zero elapsed time.

[Constructor]obj = calendarDuration (Y, M, D)
[Constructor]obj = calendarDuration (Y, M, D, H, MI, S)

Constructs new calendarDuration arrays based on input values.

8.2.3.2 calendarDuration.dispstrs

[Method]out = dispstrs (obj)
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

Chapter 8: API Reference 17

8.2.3.3 calendarDuration.ismissing

[Method]out = ismissing (obj)
True if input elements are missing.

This is equivalent to ismissing.

Returns logical array the same size as obj.

8.2.3.4 calendarDuration.isnan

[Method]out = isnan (obj)
True if input elements are NaN.

This is equivalent to ismissing, and is provided for compatibility and polymorphic
programming purposes.

Returns logical array the same size as obj.

8.2.3.5 calendarDuration.minus

[Method]out = times (A, B)
Subtraction: Subtracts one calendarDuration from another.

Returns a calendarDuration.

8.2.3.6 calendarDuration.mtimes

[Method]out = times (obj, B)
Multiplication: Multiplies a calendarDuration by a numeric factor.

This does not do true matrix multiplication, so at least one of the input arguments
must be scalar.

Returns a calendarDuration.

8.2.3.7 calendarDuration.plus

[Method]out = plus (obj, B)
Addition: add to a calendarDuration.

All the calendar elements (properties) of the two inputs are added together. No
normalization is done across the elements, aside from the normalization of NaNs.

B may be a calendarDuration, duration, or numeric. If B is numeric, it is converted
to a calendarDuration using caldays(B).

Returns a calendarDuration.

8.2.3.8 calendarDuration.times

[Method]out = times (obj, B)
Multiplication: Multiplies a calendarDuration by a numeric factor B.

Returns a calendarDuration.

Chapter 8: API Reference 18

8.2.3.9 calendarDuration.uminus

[Method]out = uminus (obj)
Unary minus. Negates the sign of obj, which is equivalent to negating each of its
components.

8.2.4 calmonths

[Function File]out = calmonths (x)
Create a calendarDuration that is a given number of calendar months long.

Input x is a numeric array specifying the number of calendar months.

This is a shorthand alternative to calling the calendarDuration constructor with
calendarDuration(0, x, 0).

Returns a new calendarDuration object of the same size as x.

See Section 8.2.3 [calendarDuration], page 16.

8.2.5 calyears

[Function]out = calyears (x)
Construct a calendarDuration a given number of years long.

This is a shorthand for calling calendarDuration(x, 0, 0).

See Section 8.2.3 [calendarDuration], page 16.

8.2.6 categorical

[Class]categorical
Categorical variable array.

A categorical array represents an array of values of a categorical variable. Each
categorical array stores the element values along with a list of the categories, and
indicators of whether the categories are ordinal (that is, they have a meaningful
mathematical ordering), and whether the set of categories is protected (preventing
new categories from being added to the array).

In addition to the categories defined in the array, a categorical array may have ele-
ments of "undefined" value. This is not considered a category; rather, it is the absence
of any known value. It is analagous to a NaN value.

This class is not fully implemented yet. Missing stuff:

• gt, ge, lt, le

• Ordinal support in general

• countcats

• summary

[Instance Variable of categorical]uint16 code
The numeric codes of the array element values. These are indexes into the cats

category list.

This is a planar property.

Chapter 8: API Reference 19

[Instance Variable of categorical]logical tfMissing
A logical mask indicating whether each element of the array is missing (that is, un-
defined).

This is a planar property.

[Instance Variable of categorical]cellstr cats
The names of the categories in this array. This is the list into which the code values
are indexes.

[Instance Variable of categorical]scalar_logical isOrdinal
A scalar logical indicating whether the categories in this array have an ordinal rela-
tionship.

8.2.6.1 categorical.addcats

[Method]out = addcats (obj, newcats)
Add categories to categorical array.

Adds the specified categories to obj, without changing any of its values.

newcats is a cellstr listing the category names to add to obj.

8.2.6.2 categorical.categorical

[Constructor]obj = categorical ()
Constructs a new scalar categorical whose value is undefined.

[Constructor]obj = categorical (vals)
[Constructor]obj = categorical (vals, valueset)
[Constructor]obj = categorical (vals, valueset, category_names)
[Constructor]obj = categorical (..., 'Ordinal', Ordinal)
[Constructor]obj = categorical (..., 'Protected', Protected)

Constructs a new categorical array from the given values.

vals is the array of values to convert to categoricals.

valueset is the set of all values from which vals is drawn. If omitted, it defaults to
the unique values in vals.

category names is a list of category names corresponding to valueset. If omitted, it
defaults to valueset, converted to strings.

Ordinal is a logical indicating whether the category values in obj have a numeric
ordering relationship. Defaults to false.

Protected indicates whether obj should be protected, which prevents the addition of
new categories to the array. Defaults to false.

8.2.6.3 categorical.categories

[Method]out = categories (obj)
Get a list of the categories in obj.

Gets a list of the categories in obj, identified by their category names.

Returns a cellstr column vector.

Chapter 8: API Reference 20

8.2.6.4 categorical.cellstr

[Method]out = cellstr (obj)
Convert to cellstr.

Converts obj to a cellstr array. The strings will be the category names for corre-
sponding values, or '' for undefined values.

Returns a cellstr array the same size as obj.

8.2.6.5 categorical.dispstrs

[Method]out = dispstrs (obj)
Display strings.

Gets display strings for each element in obj. The display strings are either the category
string, or '<undefined>' for undefined values.

Returns a cellstr array the same size as obj.

8.2.6.6 categorical.double

[Method]out = double (obj)
Convert to double array, by getting the underlying code values.

Converts obj to a string array. The doubles will be the underlying numeric code
values of obj, or NaN for undefined values.

The numeric code values of two different categorical arrays do *not* necessarily corre-
spond to the same string values, and can *not* be meaningfully compared for equality
or ordering.

Returns a double array the same size as obj.

8.2.6.7 categorical.iscategory

[Method]out = iscategory (obj, catnames)
Test whether input is a category on a categorical array.

catnames is a cellstr listing the category names to check against obj.

Returns a logical array the same size as catnames.

8.2.6.8 categorical.ismissing

[Method]out = ismissing (obj)
Test whether elements are missing.

For categorical arrays, undefined elements are considered to be missing.

Returns a logical array the same size as obj.

8.2.6.9 categorical.isnanny

[Method]out = isnanny (obj)
Test whethere elements are NaN-ish.

Checks where each element in obj is NaN-ish. For categorical arrays, undefined values
are considered NaN-ish; any other value is not.

Returns a logical array the same size as obj.

Chapter 8: API Reference 21

8.2.6.10 categorical.isordinal

[Method]out = isordinal (obj)
Whether obj is ordinal.

Returns true if obj is ordinal (as determined by its IsOrdinal property), and false
otherwise.

8.2.6.11 categorical.isundefined

[Method]out = isundefined (obj)
Test whether elements are undefined.

Checks whether each element in obj is undefined. "Undefined" is a special value
defined by categorical. It is equivalent to a NaN or a missing value.

Returns a logical array the same size as obj.

8.2.6.12 categorical.mergecats

[Method]out = mergecats (obj, oldcats)
[Method]out = mergecats (obj, oldcats, newcat)

Merge multiple categories.

Merges the categories oldcats into a single category. If newcat is specified, that new
category is added if necessary, and all of oldcats are merged into it. newcat must be
an existing category in obj if obj is ordinal.

If newcat is not provided, all of odcats are merged into oldcats{1}.

8.2.6.13 categorical.missing

[Static Method]out = categorical.missing ()
[Static Method]out = categorical.missing (sz)

Create an array of missing (undefined) categoricals.

Creates a categorical array whose elements are all missing (<undefined>).

This is a convenience alias for Section 8.2.6.21 [categorical.undefined], page 23, so you
can call it generically. It returns strictly the same results as calling Section 8.2.6.21
[categorical.undefined], page 23, with the same arguments.

Returns a categorical array.

See also: categorical.undefined

8.2.6.14 categorical.removecats

[Method]out = removecats (obj)
Removes all unused categories from obj. This is equivalent to out = squeezecats

(obj).

[Method]out = removecats (obj, oldcats)
Remove categories from categorical array.

Removes the specified categories from obj. Elements of obj whose values belonged to
those categories are replaced with undefined.

newcats is a cellstr listing the category names to add to obj.

Chapter 8: API Reference 22

8.2.6.15 categorical.renamecats

[Method]out = renamecats (obj, newcats)
[Method]out = renamecats (obj, oldcats, newcats)

Rename categories.

Renames some or all of the categories in obj, without changing any of its values.

8.2.6.16 categorical.reordercats

[Method]out = reordercats (obj)
[Method]out = reordercats (obj, newcats)

Reorder categories.

Reorders the categories in obj to match newcats.

newcats is a cellstr that must be a reordering of obj’s existing category list. If newcats
is not supplied, sorts the categories in alphabetical order.

8.2.6.17 categorical.setcats

[Method]out = setcats (obj, newcats)
Set categories for categorical array.

Sets the categories to use for obj. If any current categories are absent from the
newcats list, current values of those categories become undefined.

8.2.6.18 categorical.squeezecats

[Method]out = squeezecats (obj)
Remove unused categories.

Removes all categories which have no corresponding values in obj’s elements.

This is currently unimplemented.

8.2.6.19 categorical.string

[Method]out = string (obj)
Convert to string array.

Converts obj to a string array. The strings will be the category names for correspond-
ing values, or <missing> for undefined values.

Returns a string array the same size as obj.

8.2.6.20 categorical.summary

[Method]summary (obj)
Display summary of array’s values.

Displays a summary of the values in this categorical array. The output may contain
info like the number of categories, number of undefined values, and frequency of each
category.

Chapter 8: API Reference 23

8.2.6.21 categorical.undefined

[Static Method]out = categorical.undefined ()
[Static Method]out = categorical.undefined (sz)

Create an array of undefined categoricals.

Creates a categorical array whose elements are all <undefined>.

sz is the size of the array to create. If omitted or empty, creates a scalar.

Returns a categorical array.

See also: categorical.missing

8.2.7 cell2table

[Function]out = cell2table (c)
[Function]out = cell2table (..., 'VariableNames', VariableNames)
[Function]out = cell2table (..., 'RowNames', RowNames)

Convert a cell array to a table.

Converts a 2-dimensional cell matrix into a table. Each column in the input c becomes
a variable in out. For columns that contain all scalar values of cat-compatible types,
they are “popped out” of their cells and condensed into a homogeneous array of the
contained type.

See also: Section 8.2.1 [array2table], page 15, Section 8.2.55 [table], page 51, Sec-
tion 8.2.54 [struct2table], page 50,

8.2.8 colvecfun

[Function]out = colvecfun (fcn, x)
Apply a function to column vectors in array.

Applies the given function fcn to each column vector in the array x, by iterating over
the indexes along all dimensions except dimension 1. Collects the function return
values in an output array.

fcn must be a function which takes a column vector and returns a column vector of
the same size. It does not have to return the same type as x.

Returns the result of applying fcn to each column in x, all concatenated together in
the same shape as x.

8.2.9 contains

[Function]out = colvecfun (str, pattern)
[Function]out = colvecfun (..., 'IgnoreCase', IgnoreCase)

Test if strings contain a pattern.

Tests whether the given strings contain the given pattern(s).

str (char, cellstr, or string) is a list of strings to compare against pattern.

pattern (char, cellstr, or string) is a list of patterns to match. These are literal plain
string patterns, not regex patterns. If more than one pattern is supplied, the return
value is true if the string matched any of them.

Returns a logical array of the same size as the string array represented by str.

See also: startsWith, endsWith

Chapter 8: API Reference 24

8.2.10 datetime

[Class]datetime
Represents points in time using the Gregorian calendar.

The underlying values are doubles representing the number of days since the Matlab
epoch of "January 0, year 0". This has a precision of around nanoseconds for typical
times.

A datetime array is an array of date/time values, with each element holding a com-
plete date/time. The overall array may also have a TimeZone and a Format associated
with it, which apply to all elements in the array.

This is an attempt to reproduce the functionality of Matlab’s datetime. It also
contains some Octave-specific extensions.

[Instance Variable of datetime]double dnums
The underlying datenums that represent the points in time. These are always in
UTC.

This is a planar property: the size of dnums is the same size as the containing datetime
array object.

[Instance Variable of datetime]char TimeZone
The time zone this datetime array is in. Empty if this does not have a time zone
associated with it (“unzoned”). The name of an IANA time zone if this does.

Setting the TimeZone of a datetime array changes the time zone it is presented in for
strings and broken-down times, but does not change the underlying UTC times that
its elements represent.

[Instance Variable of datetime]char Format
The format to display this datetime in. Currently unsupported.

8.2.10.1 datetime.colon

[Method]out = colon (lo, hi)
[Method]out = colon (hi, inc, hi)

Generate a sequence of uniformly-spaced values.

This method implements the behavior for the colon operator (lo:hi or lo:inc:hi

calls) for the datetime type.

"Uniformly-spaced" means uniform in terms of the duration or calendarDuration
value used as the increment. Calendar durations are not necessarily equal-sized in
terms of the amount of actual time contained in them, so when using a calendar-
Duration as the increment, the resulting vector may not be, and often will not be,
uniformly spaced in terms of actual (non-"calendar") time.

The inc argument may be a duration, calendarDuration, or numeric. Numerics are
taken to be a number of days (uniform-size days, not calendar days), and are converted
to a duration object with duration.ofDays (inc). The default value for inc, used
in the two-arg lo:hi is 1, that is, 1 day of exactly 24 hours.

Returns a datetime vector.

Chapter 8: API Reference 25

WARNING: There are issues with negative-direction sequences. When hi is less than
lo, this will always produce an empty array, even if inc is a negative value. And there
are cases with calendarDurations that have both Months, Days and/or Times with
mixed signs that values may move in the "wrong" direction, or produce an infinite
loop. If these problem cases can be correctly identified, but not corrected, those cases
may raise an error future releases of Tablicious.

8.2.10.2 datetime.convertDatenumTimeZone

[Static Method]out = datetime.convertDatenumTimeZone (dnum,
fromZoneId, toZoneId)

Convert a datenum from one time zone to another.

dnum is a datenum array to convert.

fromZoneId is a charvec containing the IANA Time Zone identifier for the time zone
to convert from.

toZoneId is a charvec containing the IANA Time Zone identifier for the time zone to
convert to.

Returns a datenum array the same size as dnum.

8.2.10.3 datetime.datenum

[Method]out = datenum (obj)
Convert this to datenums that represent the same local time.

Returns double array of same size as this.

8.2.10.4 datetime.datenum2posix

[Static Method]out = datetime.datenum2posix (dnums)
Converts Octave datenums to Unix dates.

The input datenums are assumed to be in UTC.

Returns a double, which may have fractional seconds.

8.2.10.5 datetime.datestr

[Method]out = datestr (obj)
[Method]out = datestr (obj, ...)

Format obj as date strings. Supports all arguments that core Octave’s datestr does.

Returns date strings as a 2-D char array.

8.2.10.6 datetime.datestrs

[Method]out = datestrs (obj)
[Method]out = datestrs (obj, ...)

Format obj as date strings, returning cellstr. Supports all arguments that core Oc-
tave’s datestr does.

Returns a cellstr array the same size as obj.

Chapter 8: API Reference 26

8.2.10.7 datetime.datestruct

[Method]out = datestruct (obj)
Converts this to a "datestruct" broken-down time structure.

A "datestruct" is a format of struct that Tablicious came up with. It is a scalar struct
with fields Year, Month, Day, Hour, Minute, and Second, each containing a double
array the same size as the date array it represents.

The values in the returned broken-down time are those of the local time in this’
defined time zone, if it has one.

Returns a struct with fields Year, Month, Day, Hour, Minute, and Second. Each field
contains a double array of the same size as this.

8.2.10.8 datetime.datetime

[Constructor]obj = datetime ()
Constructs a new scalar datetime containing the current local time, with no time
zone attached.

[Constructor]obj = datetime (datevec)
[Constructor]obj = datetime (datestrs)
[Constructor]obj = datetime (in, 'ConvertFrom', inType)
[Constructor]obj = datetime (Y, M, D, H, MI, S)
[Constructor]obj = datetime (Y, M, D, H, MI, MS)
[Constructor]obj = datetime (..., 'Format', Format, 'InputFormat',

InputFormat, 'Locale', InputLocale, 'PivotYear', PivotYear,
'TimeZone', TimeZone)

Constructs a new datetime array based on input values.

8.2.10.9 datetime.datevec

[Method]out = datevec (obj)
Convert this to a datevec that represent the same local wall time.

Returns double array of size [numel(obj) 6].

8.2.10.10 datetime.diff

[Method]out = diff (obj)
Differences between elements.

Computes the difference between each successive element in obj, as a duration.

Returns a duration array the same size as obj.

8.2.10.11 datetime.dispstrs

[Method]out = dispstrs (obj)
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

Chapter 8: API Reference 27

8.2.10.12 datetime.eq

[Method]out = eq (A, B)
True if A is equal to B. This defines the == operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.13 datetime.ge

[Method]out = ge (A, B)
True if A is greater than or equal to B. This defines the >= operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.14 datetime.gmtime

[Method]out = gmtime (obj)
Convert to TM STRUCT structure in UTC time.

Converts obj to a TM STRUCT style structure array. The result is in UTC time. If
obj is unzoned, it is assumed to be in UTC time.

Returns a struct array in TM STRUCT style.

8.2.10.15 datetime.gt

[Method]out = gt (A, B)
True if A is greater than B. This defines the > operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.16 datetime.hms

[Method][h, m, s] = hms (obj)
Get the Hour, Minute, and Second components of a obj.

For zoned datetimes, these will be local times in the associated time zone.

Returns double arrays the same size as obj.

8.2.10.17 datetime.isbetween

[Method]out = isbetween (obj, lower, upper)
Tests whether the elements of obj are between lower and upper.

All inputs are implicitly converted to datetime arrays, and are subject to scalar
expansion.

Returns a logical array the same size as the scalar expansion of the inputs.

Chapter 8: API Reference 28

8.2.10.18 datetime.isnan

[Method]out = isnan (obj)
True if input elements are NaT. This is an alias for isnat to support type compati-
bility and polymorphic programming.

Returns logical array the same size as obj.

8.2.10.19 datetime.isnat

[Method]out = isnat (obj)
True if input elements are NaT.

Returns logical array the same size as obj.

8.2.10.20 datetime.le

[Method]out = le (A, B)
True if A is less than or equal toB. This defines the <= operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.21 datetime.linspace

[Method]out = linspace (from, to, n)
Linearly-spaced values in date/time space.

Constructs a vector of datetimes that represent linearly spaced points starting at
from and going up to to, with n points in the vector.

from and to are implicitly converted to datetimes.

n is how many points to use. If omitted, defaults to 100.

Returns an n-long datetime vector.

8.2.10.22 datetime.localtime

[Method]out = localtime (obj)
Convert to TM STRUCT structure in UTC time.

Converts obj to a TM STRUCT style structure array. The result is a local time in
the system default time zone. Note that the system default time zone is always used,
regardless of what TimeZone is set on obj.

If obj is unzoned, it is assumed to be in UTC time.

Returns a struct array in TM STRUCT style.

Example:

dt = datetime;

dt.TimeZone = datetime.SystemTimeZone;

tm_struct = localtime (dt);

Chapter 8: API Reference 29

8.2.10.23 datetime.lt

[Method]out = lt (A, B)
True if A is less than B. This defines the < operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.24 datetime.minus

[Method]out = minus (A, B)
Subtraction (- operator). Subtracts a duration, calendarDuration or numeric B
from a datetime A, or subtracts two datetimes from each other.

If both inputs are datetime, then the output is a duration. Otherwise, the output
is a datetime.

Numeric B inputs are implicitly converted to duration using duration.ofDays.

Returns an array the same size as A.

8.2.10.25 datetime.NaT

[Static Method]out = datetime.NaT ()
[Static Method]out = datetime.NaT (sz)

“Not-a-Time”: Creates NaT-valued arrays.

Constructs a new datetime array of all NaT values of the given size. If no input sz is
given, the result is a scalar NaT.

NaT is the datetime equivalent of NaN. It represents a missing or invalid value. NaT

values never compare equal to, greater than, or less than any value, including other
NaTs. Doing arithmetic with a NaT and any other value results in a NaT.

8.2.10.26 datetime.ne

[Method]out = ne (A, B)
True if A is not equal to B. This defines the != operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

8.2.10.27 datetime.ofDatenum

[Static Method]obj = datetime.ofDatenum (dnums)
Converts a datenum array to a datetime array.

Returns an unzoned datetime array of the same size as the input.

Chapter 8: API Reference 30

8.2.10.28 datetime.ofDatestruct

[Static Method]obj = datetime.ofDatestruct (dstruct)
Converts a datestruct to a datetime array.

A datestruct is a special struct format used by Tablicious that has fields Year, Month,
Day, Hour, Minute, and Second. It is not a standard Octave datatype.

Returns an unzoned datetime array.

8.2.10.29 datetime.plus

[Method]out = plus (A, B)
Addition (+ operator). Adds a duration, calendarDuration, or numeric B to a
datetime A.

A must be a datetime.

Numeric B inputs are implicitly converted to duration using duration.ofDays.

WARNING: Arithmetic with calendarDuration arguments on datetimes in time zones
which use Daylight Saving Time may be buggy.

Returns datetime array the same size as A.

8.2.10.30 datetime.posix2datenum

[Static Method]dnums = datetime.posix2datenum (pdates)
Converts POSIX (Unix) times to datenums

Pdates (numeric) is an array of POSIX dates. A POSIX date is the number of seconds
since January 1, 1970 UTC, excluding leap seconds. The output is implicitly in UTC.

8.2.10.31 datetime.posixtime

[Method]out = posixtime (obj)
Converts this to POSIX time values (seconds since the Unix epoch)

Converts this to POSIX time values that represent the same time. The returned
values will be doubles that may include fractional second values. POSIX times are,
by definition, in UTC.

Returns double array of same size as this.

8.2.10.32 datetime.proxyKeys

[Method][keysA, keysB] = proxyKeys (a, b)
Computes proxy key values for two datetime arrays. Proxy keys are numeric values
whose rows have the same equivalence relationships as the elements of the inputs.

This is primarily for Tablicious’s internal use; users will typically not need to call it
or know how it works.

Returns two 2-D numeric matrices of size n-by-k, where n is the number of elements
in the corresponding input.

Chapter 8: API Reference 31

8.2.10.33 datetime.timeofday

[Method]out = timeofday (obj)
Get the time of day (elapsed time since midnight).

For zoned datetimes, these will be local times in the associated time zone.

Returns a duration array the same size as obj.

8.2.10.34 datetime.week

[Method]out = week (obj)
Get the week of the year.

This method is unimplemented.

8.2.10.35 datetime.ymd

[Method][y, m, d] = ymd (obj)
Get the Year, Month, and Day components of obj.

For zoned datetimes, these will be local times in the associated time zone.

Returns double arrays the same size as obj.

8.2.10.36 datetime.ymdhms

[Method][y, m, d, h, mi, s] = ymdhms (obj)
Get the Year, Month, Day, Hour, Minute, and Second components of a obj.

For zoned datetimes, these will be local times in the associated time zone.

Returns double arrays the same size as obj.

8.2.11 days

[Function]out = days (x)
Duration in days.

If x is numeric, then out is a duration array in units of fixed-length 24-hour days,
with the same size as x.

If x is a duration, then returns a double array the same size as x indicating the
number of fixed-length days that each duration is.

8.2.12 discretize

[Function][Y, E] = discretize (X, n)
[Function][Y, E] = discretize (X, edges)
[Function][Y, E] = discretize (X, dur)
[Function][Y, E] = discretize (..., 'categorical')
[Function][Y, E] = discretize (..., 'IncludedEdge', IncludedEdge)

Group data into discrete bins or categories.

n is the number of bins to group the values into.

edges is an array of edge values defining the bins.

dur is a duration value indicating the length of time of each bin.

Chapter 8: API Reference 32

If 'categorical' is specified, the resulting values are a categorical array instead
of a numeric array of bin indexes.

Returns: Y - the bin index or category of each value from X E - the list of bin edge
values

8.2.13 dispstrs

[Function]out = dispstrs (x)
Display strings for array.

Gets the display strings for each element of x. The display strings should be short,
one-line, human-presentable strings describing the value of that element.

The default implementation of dispstrs can accept input of any type, and has decent
implementations for Octave’s standard built-in types, but will have opaque displays
for most user-defined objects.

This is a polymorphic method that user-defined classes may override with their own
custom display that is more informative.

Returns a cell array the same size as x.

8.2.14 duration

[Class]duration
Represents durations or periods of time as an amount of fixed-length time (i.e. fixed-
length seconds). It does not care about calendar things like months and days that
vary in length over time.

This is an attempt to reproduce the functionality of Matlab’s duration. It also
contains some Octave-specific extensions.

Duration values are stored as double numbers of days, so they are an approximate
type. In display functions, by default, they are displayed with millisecond precision,
but their actual precision is closer to nanoseconds for typical times.

[Instance Variable of duration]double days
The underlying datenums that represent the durations, as number of (whole and
fractional) days. These are uniform 24-hour days, not calendar days.

This is a planar property: the size of days is the same size as the containing duration
array object.

[Instance Variable of duration]char Format
The format to display this duration in. Currently unsupported.

8.2.14.1 duration.char

[Method]out = char (obj)
Convert to char. The contents of the strings will be the same as returned by dispstrs.

This is primarily a convenience method for use on scalar objs.

Returns a 2-D char array with one row per element in obj.

Chapter 8: API Reference 33

8.2.14.2 duration.dispstrs

[Method]out = duration (obj)
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

8.2.14.3 duration.hours

[Method]out = hours (obj)
Equivalent number of hours.

Gets the number of fixed-length 60-minute hours that is equivalent to this duration.

Returns double array the same size as obj.

8.2.14.4 duration.linspace

[Method]out = linspace (from, to, n)
Linearly-spaced values in time duration space.

Constructs a vector of durations that represent linearly spaced points starting at
from and going up to to, with n points in the vector.

from and to are implicitly converted to durations.

n is how many points to use. If omitted, defaults to 100.

Returns an n-long datetime vector.

8.2.14.5 duration.milliseconds

[Method]out = milliseconds (obj)
Equivalent number of milliseconds.

Gets the number of milliseconds that is equivalent to this duration.

Returns double array the same size as obj.

8.2.14.6 duration.minutes

[Method]out = minutes (obj)
Equivalent number of minutes.

Gets the number of fixed-length 60-second minutes that is equivalent to this duration.

Returns double array the same size as obj.

8.2.14.7 duration.ofDays

[Static Method]obj = duration.ofDays (dnums)
Converts a double array representing durations in whole and fractional days to a
duration array. This is the method that is used for implicit conversion of numerics
in many cases.

Returns a duration array of the same size as the input.

Chapter 8: API Reference 34

8.2.14.8 duration.seconds

[Method]out = seconds (obj)
Equivalent number of seconds.

Gets the number of seconds that is equivalent to this duration.

Returns double array the same size as obj.

8.2.14.9 duration.years

[Method]out = years (obj)
Equivalent number of years.

Gets the number of fixed-length 365.2425-day years that is equivalent to this duration.

Returns double array the same size as obj.

8.2.15 eqn

[Function]out = eqn (A, B)
Determine element-wise equality, treating NaNs as equal

out = eqn (A, B)

eqn is just like eq (the function that implements the == operator), except that it
considers NaN and NaN-like values to be equal. This is the element-wise equivalent
of isequaln.

eqn uses isnanny to test for NaN and NaN-like values, which means that NaNs and
NaTs are considered to be NaN-like, and string arrays’ “missing” and categorical
objects’ “undefined” values are considered equal, because they are NaN-ish.

Developer’s note: the name “eqn” is a little unfortunate, because “eqn” could also
be an abbreviation for “equation”. But this name follows the isequaln pattern of
appending an “n” to the corresponding non-NaN-equivocating function.

See also: eq, isequaln, Section 8.2.24 [isnanny], page 36,

8.2.16 head

[Function]out = head (A)
[Function]out = head (A, k)

Get first K rows of an array.

Returns the array A, subsetted to its first k rows. This means subsetting it to the first
(min (k, size (A, 1))) elements along dimension 1, and leaving all other dimensions
unrestricted.

A is the array to subset.

k is the number of rows to get. k defaults to 8 if it is omitted or empty.

If there are less than k rows in A, returns all rows.

Returns an array of the same type as A, unless ()-indexing A produces an array of a
different type, in which case it returns that type.

See also: tail

Chapter 8: API Reference 35

8.2.17 hours

[Function File]out = hours (x)
Create a duration x hours long, or get the hours in a duration x.

If input is numeric, returns a duration array that is that many hours in time.

If input is a duration, converts the duration to a number of hours.

Returns an array the same size as x.

8.2.18 iscalendarduration

[Function]out = iscalendarduration (x)
True if input is a calendarDuration array, false otherwise.

Respects iscalendarduration override methods on user-defined classes, even if they
do not inherit from calendarDuration or were known to Tablicious at authoring
time.

Returns a scalar logical.

8.2.19 iscategorical

[Function]out = iscategorical (x)
True if input is a categorical array, false otherwise.

Respects iscategorical override methods on user-defined classes, even if they do
not inherit from categorical or were known to Tablicious at authoring time.

Returns a scalar logical.

8.2.20 isdatetime

[Function]out = isdatetime (x)
True if input is a datetime array, false otherwise.

Respects isdatetime override methods on user-defined classes, even if they do not
inherit from datetime or were known to Tablicious at authoring time.

Returns a scalar logical.

8.2.21 isduration

[Function]out = isduration (x)
True if input is a duration array, false otherwise.

Respects isduration override methods on user-defined classes, even if they do not
inherit from duration or were known to Tablicious at authoring time.

Returns a scalar logical.

8.2.22 isfile

Not documented

8.2.23 isfolder

Not documented

Chapter 8: API Reference 36

8.2.24 isnanny

[Function]out = isnanny (X)
Test if elements are NaN or NaN-like

Tests if input elements are NaN, NaT, or otherwise NaN-like. This is true if isnan()
or isnat() returns true, and is false for types that do not support isnan() or
isnat().

This function only exists because:

a. Matlab decided to call their NaN values for datetime “NaT” instead, and test
for them with a different “isnat()” function, and

b. isnan() errors out for some types that do not support isnan(), like cells.

isnanny() smooths over those differences so you can call it polymorphically on any
input type. Hopefully.

Under normal operation, isnanny() should not throw an error for any type or value
of input.

See also: ismissing, isnan, isnat, Section 8.2.15 [eqn], page 34, isequaln

8.2.25 istable

[Function]out = istable (x)
True if input is a table array or other table-like type, false otherwise.

Respects istable override methods on user-defined classes, even if they do not inherit
from table or were known to Tablicious at authoring time.

User-defined classes should only override istable to return true if they conform to
the table public interface. That interface is not well-defined or documented yet, so
maybe you don’t want to do that yet.

Returns a scalar logical.

8.2.26 istabular

[Function]out = istabular (x)
True if input is eitehr a table or timetable array, or an object like them.

Respects istable and istimetable override methods on user-defined classes, even if
they do not inherit from table or were known to Tablicious at authoring time.

Returns a scalar logical.

8.2.27 istimetable

[Function]out = istimetable (x)
True if input is a timetable array or other timetable-like type, false otherwise.

Respects istimetable override methods on user-defined classes, even if they do not
inherit from table or were known to Tablicious at authoring time.

User-defined classes should only override istimetable to return true if they conform
to the table public interface. That interface is not well-defined or documented yet,
so maybe you don’t want to do that yet.

Returns a scalar logical.

Chapter 8: API Reference 37

8.2.28 localdate

[Class]localdate
Represents a complete day using the Gregorian calendar.

This class is useful for indexing daily-granularity data or representing time periods
that cover an entire day in local time somewhere. The major purpose of this class is
"type safety", to prevent time-of-day values from sneaking in to data sets that should
be daily only. As a secondary benefit, this uses less memory than datetimes.

[Instance Variable of localdate]double dnums
The underlying datenum values that represent the days. The datenums are at the
midnight that is at the start of the day it represents.

These are doubles, but they are restricted to be integer-valued, so they represent
complete days, with no time-of-day component.

[Instance Variable of localdate]char Format
The format to display this localdate in. Currently unsupported.

8.2.28.1 localdate.datenum

[Method]out = datenum (obj)
Convert this to datenums that represent midnight on obj’s days.

Returns double array of same size as this.

8.2.28.2 localdate.datestr

[Method]out = datestr (obj)
[Method]out = datestr (obj, ...)

Format obj as date strings. Supports all arguments that core Octave’s datestr does.

Returns date strings as a 2-D char array.

8.2.28.3 localdate.datestrs

[Method]out = datestrs (obj)
[Method]out = datestrs (obj, ...)

Format obj as date strings, returning cellstr. Supports all arguments that core Oc-
tave’s datestr does.

Returns a cellstr array the same size as obj.

8.2.28.4 localdate.datestruct

[Method]out = datestruct (obj)
Converts this to a “datestruct” broken-down time structure.

A “datestruct” is a format of struct that Tablicious came up with. It is a scalar struct
with fields Year, Month, and Day, each containing a double array the same size as the
date array it represents. This format differs from the “datestruct” used by datetime

in that it lacks Hour, Minute, and Second components. This is done for efficiency.

Chapter 8: API Reference 38

The values in the returned broken-down time are those of the local time in obj’s
defined time zone, if it has one.

Returns a struct with fields Year, Month, and Day. Each field contains a double array
of the same size as this.

8.2.28.5 localdate.dispstrs

[Method]out = dispstrs (obj)
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

8.2.28.6 localdate.isnan

[Method]out = isnan (obj)
True if input elements are NaT. This is an alias for isnat to support type compati-
bility and polymorphic programming.

Returns logical array the same size as obj.

8.2.28.7 localdate.isnat

[Method]out = isnat (obj)
True if input elements are NaT.

Returns logical array the same size as obj.

8.2.28.8 localdate.localdate

[Constructor]obj = localdate ()
Constructs a new scalar localdate containing the current local date.

[Constructor]obj = localdate (datenums)
[Constructor]obj = localdate (datestrs)
[Constructor]obj = localdate (Y, M, D)
[Constructor]obj = localdate (..., 'Format', Format)

Constructs a new localdate array based on input values.

8.2.28.9 localdate.NaT

[Static Method]out = localdate.NaT ()
[Static Method]out = localdate.NaT (sz)

“Not-a-Time”: Creates NaT-valued arrays.

Constructs a new datetime array of all NaT values of the given size. If no input sz is
given, the result is a scalar NaT.

NaT is the datetime equivalent of NaN. It represents a missing or invalid value. NaT

values never compare equal to, greater than, or less than any value, including other
NaTs. Doing arithmetic with a NaT and any other value results in a NaT.

This static method is provided because the global NaT function creates datetimes,
not localdates

Chapter 8: API Reference 39

8.2.28.10 localdate.posixtime

[Method]out = posixtime (obj)
Converts this to POSIX time values for midnight of obj’s days.

Converts this to POSIX time values that represent the same date. The returned values
will be doubles that will not include fractional second values. The times returned are
those of midnight UTC on obj’s days.

Returns double array of same size as this.

8.2.28.11 localdate.ymd

[Method][y, m, d] = ymd (obj)
Get the Year, Month, and Day components of obj.

Returns double arrays the same size as obj.

8.2.29 milliseconds

[Function File]out = milliseconds (x)
Create a duration x milliseconds long, or get the milliseconds in a duration x.

If input is numeric, returns a duration array that is that many milliseconds in time.

If input is a duration, converts the duration to a number of milliseconds.

Returns an array the same size as x.

8.2.30 minutes

[Function File]out = hours (x)
Create a duration x hours long, or get the hours in a duration x.

8.2.31 missing

[Class]missing
Generic auto-converting missing value.

missing is a generic missing value that auto-converts to other types.

A missing array indicates a missing value, of no particular type. It auto- converts
to other types when it is combined with them via concatenation or other array com-
bination operations.

This class is currently EXPERIMENTAL. Use at your own risk.

Note: This class does not actually work for assignment. If you do this:

x = 1:5

x(3) = missing

It’s supposed to work, but I can’t figure out how to do this in a normal classdef
object, because there doesn’t seem to be any function that’s implicitly called for type
conversion in that assignment. Darn it.

Chapter 8: API Reference 40

8.2.31.1 missing.dispstrs

[Method]out = dispstrs (obj)
Display strings.

Gets display strings for each element in obj.

For missing, the display strings are always '<missing>'.

Returns a cellstr the same size as obj.

8.2.31.2 missing.ismissing

[Method]out = ismissing (obj)
Test whether elements are missing values.

ismissing is always true for missing arrays.

Returns a logical array the same size as obj.

8.2.31.3 missing.isnan

[Method]out = isnan (obj)
Test whether elements are NaN.

isnan is always true for missing arrays.

Returns a logical array the same size as obj.

8.2.31.4 missing.isnanny

[Method]out = isnanny (obj)
Test whether elements are NaN-like.

isnanny is always true for missing arrays.

Returns a logical array the same size as obj.

8.2.31.5 missing.missing

[Constructor]obj = missing ()
Constructs a scalar missing array.

The constructor takes no arguments, since there’s only one missing value.

8.2.32 mustBeA

Not documented

8.2.33 mustBeCellstr

Not documented

8.2.34 mustBeCharvec

Not documented

8.2.35 mustBeFinite

Not documented

Chapter 8: API Reference 41

8.2.36 mustBeInteger

Not documented

8.2.37 mustBeMember

Not documented

8.2.38 mustBeNonempty

Not documented

8.2.39 mustBeNumeric

Not documented

8.2.40 mustBeReal

Not documented

8.2.41 mustBeSameSize

Not documented

8.2.42 mustBeScalar

Not documented

8.2.43 mustBeScalarLogical

Not documented

8.2.44 mustBeVector

Not documented

8.2.45 NaC

[Function]out = NaC ()
[Function]out = NaC (sz)

“Not-a-Categorical". Creates missing-valued categorical arrays.

Returns a new categorical array of all missing values of the given size. If no input
sz is given, the result is a scalar missing categorical.

NaC is the categorical equivalent of NaN or NaT. It represents a missing, invalid, or
null value. NaC values never compare equal to any value, including other NaCs.

NaC is a convenience function which is strictly a wrapper around
categorical.undefined and returns the same results, but may be more
convenient to type and/or more readable, especially in array expressions with several
values.

See also: categorical.undefined

Chapter 8: API Reference 42

8.2.46 NaS

[Function]out = NaS ()
[Function]out = NaS (sz)

“Not-a-String". Creates missing-valued string arrays.

Returns a new string array of all missing values of the given size. If no input sz is
given, the result is a scalar missing string.

NaS is the string equivalent of NaN or NaT. It represents a missing, invalid, or null
value. NaS values never compare equal to any value, including other NaSs.

NaS is a convenience function which is strictly a wrapper around string.missing and
returns the same results, but may be more convenient to type and/or more readable,
especially in array expressions with several values.

See also: string.missing

8.2.47 NaT

[Function]out = NaT ()
[Function]out = NaT (sz)

“Not-a-Time”. Creates missing-valued datetime arrays.

Constructs a new datetime array of all NaT values of the given size. If no input sz is
given, the result is a scalar NaT.

NaT is the datetime equivalent of NaN. It represents a missing or invalid value. NaT

values never compare equal to, greater than, or less than any value, including other
NaTs. Doing arithmetic with a NaT and any other value results in a NaT.

NaT currently cannot create NaT arrays of type localdate. To do that, use Sec-
tion 8.2.28.9 [localdate.NaT], page 38, instead.

8.2.48 pp

[Function]pp (X)
[Function]pp (A, B, C, ...)
[Function]pp ('A', 'B', 'C', ...)
[Function]pp A B C ...

Alias for prettyprint, for interactive use.

This is an alias for prettyprint(), with additional name-conversion magic.

If you pass in a char, instead of pretty-printing that directly, it will grab and pretty-
print the variable of that name from the caller’s workspace. This is so you can
conveniently run it from the command line.

8.2.49 scalarexpand

[Function][out1, out2, ..., outN] = scalarexpand (x1, x2, ..., xN)
Expand scalar inputs to match size of non-scalar inputs.

Expands each scalar input argument to match the size of the non-scalar input ar-
guments, and returns the expanded values in the corresponding output arguments.
repmat is used to do the expansion.

Chapter 8: API Reference 43

Works on any input types that support size, isscalar, and repmat.

It is an error if any of the non-scalar inputs are not the same size as all of the other
non-scalar inputs.

Returns as many output arguments as there were input arguments.

Examples:

x1 = rand(3);

x2 = 42;

x3 = magic(3);

[x1, x2, x3] = scalarexpand (x1, x2, x3)

8.2.50 seconds

[Function File]out = seconds (x)
Create a duration x seconds long, or get the seconds in a duration x.

If input is numeric, returns a duration array that is that many seconds in time.

If input is a duration, converts the duration to a number of seconds.

Returns an array the same size as x.

8.2.51 size2str

[Function]out = size2str (sz)
Format an array size for display.

Formats the given array size sz as a string for human-readable display. It will be in
the format “d1-by-d2-...-by-dN”, for the N dimensions represented by sz.

sz is an array of dimension sizes, in the format returned by the size function.

Returns a charvec.

Examples:

str = size2str (size (magic (4)))

⇒ str = 4-by-4

8.2.52 splitapply

[Function]out = splitapply (func, X, G)
[Function]out = splitapply (func, X1, ..., XN, G)
[Function][Y1, ..., YM] = splitapply (...)

Split data into groups and apply function.

func is a function handle to call on each group of inputs in turn.

X, X1, . . . , XN are the input variables that are split into groups for the function
calls. If X is a table, then its contained variables are “popped out” and considered
to be the X1 . . . XN input variables.

G is the grouping variable vector. It contains a list of integers that identify which
group each element of the X input variables belongs to. NaNs in G mean that element
is ignored.

Vertically concatenates the function outputs for each of the groups and returns them
in as many variables as you capture.

Chapter 8: API Reference 44

Returns the concatenated outputs of applying func to each group.

See also: Section 8.2.55.8 [table.groupby], page 53, Section 8.2.55.41 [table.splitapply],
page 62,

8.2.53 string

[Class]string
A string array of Unicode strings.

A string array is an array of strings, where each array element is a single string.

The string class represents strings, where:

• Each element of a string array is a single string

• A single string is a 1-dimensional row vector of Unicode characters

• Those characters are encoded in UTF-8

• This last bit depends on the fact that Octave chars are UTF-8 now

This should correspond pretty well to what people think of as strings, and is pretty
compatible with people’s typical notion of strings in Octave.

String arrays also have a special “missing” value, that is like the string equivalent of
NaN for doubles or “undefined” for categoricals, or SQL NULL.

This is a slightly higher-level and more strongly-typed way of representing strings
than cellstrs are. (A cellstr array is of type cell, not a text- specific type, and allows
assignment of non-string data into it.)

Be aware that while string arrays interconvert with Octave chars and cellstrs, Octave
char elements represent 8-bit UTF-8 code units, not Unicode code points.

This class really serves three roles:

1. It is a type-safe object wrapper around Octave’s base primitive character types.

2. It adds ismissing() semantics.

3. And it introduces Unicode support.

Not clear whether it’s a good fit to have the Unicode support wrapped up in this.
Maybe it should just be a simple object wrapper wrapper, and defer Unicode seman-
tics to when core Octave adopts them for char and cellstr. On the other hand, because
Octave chars are UTF-8, not UCS-2, some methods like strlength() and reverse() are
just going to be wrong if they delegate straight to chars.

“Missing” string values work like NaNs. They are never considered equal, less than,
or greater to any other string, including other missing strings. This applies to set
membership and other equivalence tests.

TODO: Need to decide how far to go with Unicode semantics, and how much to just
make this an object wrapper over cellstr and defer to Octave’s existing char/string-
handling functions.

TODO: demote strings should probably be static or global, so that other functions
can use it to hack themselves into being string-aware.

Chapter 8: API Reference 45

8.2.53.1 string.cell

[Method]out = cell (obj)
Convert to cell array.

Converts this to a cell, which will be a cellstr. Missing values are converted to ''.

This method returns the same values as cellstr(obj); it is just provided for interface
compatibility purposes.

Returns a cell array of the same size as obj.

8.2.53.2 string.cellstr

[Method]out = cellstr (obj)
Convert to cellstr.

Converts obj to a cellstr. Missing values are converted to ''.

Returns a cellstr array of the same size as obj.

8.2.53.3 string.char

[Method]out = char (obj)
Convert to char array.

Converts obj to a 2-D char array. It will have as many rows as obj has elements.

It is an error to convert missing-valued string arrays to char. (NOTE: This may
change in the future; it may be more appropriate) to convert them to space-padded
empty strings.)

Returns 2-D char array.

8.2.53.4 string.cmp

[Method][out, outA, outB] = cmp (A, B)
Value ordering comparison, returning -1/0/+1.

Compares each element of A and B, returning for each element i whether A(i) was
less than (-1), equal to (0), or greater than (1) the corresponding B(i).

TODO: What to do about missing values? Should missings sort to the end (preserving
total ordering over the full domain), or should their comparisons result in a fourth
"null"/"undef" return value, probably represented by NaN? FIXME: The current
implementation does not handle missings.

Returns a numeric array out of the same size as the scalar expansion of A and B.
Each value in it will be -1, 0, or 1.

Also returns scalar-expanded copies of A and B as outA and outB, as a programming
convenience.

8.2.53.5 string.decode

[Static Method]out = string.decode (bytes, charsetName)
Decode encoded text from bytes.

Chapter 8: API Reference 46

Decodes the given encoded text in bytes according to the specified encoding, given
by charsetName.

Returns a scalar string.

See also: Section 8.2.53.8 [string.encode], page 46,

8.2.53.6 string.dispstrs

[Method]out = dispstrs (obj)
Display strings for array elements.

Gets display strings for all the elements in obj. These display strings will either be
the string contents of the element, enclosed in "...", and with CR/LF characters
replaced with '\r' and '\n' escape sequences, or "<missing>" for missing values.

Returns a cellstr of the same size as obj.

8.2.53.7 string.empty

[Function]out = empty (sz)
Get an empty string array of a specified size.

The argument sz is optional. If supplied, it is a numeric size array whose product
must be zero. If omitted, it defaults to [0 0].

The size may also be supplied as multiple arguments containing scalar numerics.

Returns an empty string array of the requested size.

8.2.53.8 string.encode

[Method]out = encode (obj, charsetName)
Encode string in a given character encoding.

obj must be scalar.

charsetName (charvec) is the name of a character encoding. (TODO: Document what
determines the set of valid encoding names.)

Returns the encoded string as a uint8 vector.

See also: Section 8.2.53.5 [string.decode], page 45.

8.2.53.9 string.endsWith

[Method]out = endsWith (obj, pattern)
[Method]out = endsWith (obj, pattern, ’IgnoreCase’, true/false)

Test if string ends with pattern.

Returns a logical array the size of the scalar expansion of obj and pattern.

8.2.53.10 string.erase

[Method]out = erase (obj, match)
Erase matching substring.

Erases the substrings in obj which match the match input.

Returns a string array of the same size as obj.

Chapter 8: API Reference 47

8.2.53.11 string.ismissing

[Method]out = ismissing (obj)
Test whether array elements are missing.

For string arrays, only the special “missing” value is considered missing. Empty
strings are not considered missing, the way they are with cellstrs.

Returns a logical array the same size as obj.

8.2.53.12 string.isnanny

[Method]out = isnanny (obj)
Test whether array elements are NaN-like.

Missing values are considered nannish; any other string value is not.

Returns a logical array of the same size as obj.

8.2.53.13 string.isstring

[Method]out = isstring (obj)
Test if input is a string array.

isstring is always true for string inputs.

Returns a scalar logical.

8.2.53.14 string.lower

[Method]out = lower (obj)
Convert to lower case.

Converts all the characters in all the strings in obj to lower case.

This currently delegates to Octave’s own lower() function to do the conversion, so
whatever character class handling it has, this has.

Returns a string array of the same size as obj.

8.2.53.15 string.missing

[Static Method]out = string.missing (sz)
Missing string value.

Creates a string array of all-missing values of the specified size sz. If sz is omitted,
creates a scalar missing string.

Returns a string array of size sz or [1 1].

See also: NaS

8.2.53.16 string.plus

[Method]out = plus (a, b)
String concatenation via plus operator.

Concatenates the two input arrays, string-wise. Inputs that are not string arrays are
converted to string arrays.

Chapter 8: API Reference 48

The concatenation is done by calling ‘strcat‘ on the inputs, and has the same behavior.

Returns a string array the same size as the scalar expansion of its inputs.

See also: string.strcat

8.2.53.17 string.regexprep

[Method]out = regexprep (obj, pat, repstr)
[Method]out = regexprep (..., varargin)

Replace based on regular expression matching.

Replaces all the substrings matching a given regexp pattern pat with the given re-
placement text repstr.

Returns a string array of the same size as obj.

8.2.53.18 string.reverse

[Method]out = reverse (obj)
Reverse string, character-wise.

Reverses the characters in each string in obj. This operates on Unicode characters
(code points), not on bytes, so it is guaranteed to produce valid UTF-8 as its output.

Returns a string array the same size as obj.

8.2.53.19 string.reverse bytes

[Method]out = reverse_bytes (obj)
Reverse string, byte-wise.

Reverses the bytes in each string in obj. This operates on bytes (Unicode code units),
not characters.

This may well produce invalid strings as a result, because reversing a UTF-8 byte
sequence does not necessarily produce another valid UTF-8 byte sequence.

You probably do not want to use this method. You probably want to use
string.reverse instead.

Returns a string array the same size as obj.

See also: Section 8.2.53.18 [string.reverse], page 48,

8.2.53.20 string.startsWith

[Method]out = startsWith (obj, pattern)
[Method]out = startsWith (obj, pattern, ’IgnoreCase’, true/false)

Test if string starts with pattern.

Returns a logical array the size of the scalar expansion of obj and pattern.

8.2.53.21 string.strcat

[Method]out = strcat (varargin)
String concatenation.

Chapter 8: API Reference 49

Concatenates the corresponding elements of all the input arrays, string-wise. Inputs
that are not string arrays are converted to string arrays.

The semantics of concatenating missing strings with non-missing strings has not been
determined yet.

Returns a string array the same size as the scalar expansion of its inputs.

8.2.53.22 string.strcmp

[Method]out = strcmp (A, B)
String comparison.

Tests whether each element in A is exactly equal to the corresponding element in B.
Missing values are not considered equal to each other.

This does the same comparison as A == B, but is not polymorphic. Generally, there
is no reason to use strcmp instead of == or eq on string arrays, unless you want to
be compatible with cellstr inputs as well.

Returns logical array the size of the scalar expansion of A and B.

8.2.53.23 string.strfind

[Method]out = strfind (obj, pattern)
[Method]out = strfind (..., varargin)

Find pattern in string.

Finds the locations where pattern occurs in the strings of obj.

TODO: It’s ambiguous whether a scalar this should result in a numeric out or a cell
array out.

Returns either an index vector, or a cell array of index vectors.

8.2.53.24 string.string

[Constructor]obj = string ()
[Constructor]obj = string (in)

Construct a new string array.

The zero-argument constructor creates a new scalar string array whose value is the
empty string.

The other constructors construct a new string array by converting various types of
inputs.

• chars and cellstrs are converted via cellstr()

• numerics are converted via num2str()

• datetimes are converted via datestr()

8.2.53.25 string.strlength

[Method]out = strlength (obj)
String length in characters (actually, UTF-16 code units).

Gets the length of each string, counted in UTF-16 code units. In most cases, this
is the same as the number of characters. The exception is for characters outside

Chapter 8: API Reference 50

the Unicode Basic Multilingual Plane, which are represented with UTF-16 surrogate
pairs, and thus will count as 2 characters each.

The reason this method counts UTF-16 code units, instead of Unicode code points
(true characters), is for Matlab compatibility.

This is the string length method you probably want to use, not strlength_bytes.

Returns double array of the same size as obj. Returns NaNs for missing strings.

See also: Section 8.2.53.26 [string.strlength bytes], page 50,

8.2.53.26 string.strlength bytes

[Method]out = strlength_bytes (obj)
String length in bytes.

Gets the length of each string in obj, counted in Unicode UTF-8 code units (bytes).
This is the same as numel(str) for the corresponding Octave char vector for each
string, but may not be what you actually want to use. You may want strlength

instead.

Returns double array of the same size as obj. Returns NaNs for missing strings.

See also: Section 8.2.53.25 [string.strlength], page 49,

8.2.53.27 string.strrep

[Method]out = strrep (obj, match, replacement)
[Method]out = strrep (..., varargin)

Replace occurrences of pattern with other string.

Replaces matching substrings in obj with a given replacement string.

varargin is passed along to the core Octave strrep function. This supports whatever
options it does. TODO: Maybe document what those options are.

Returns a string array of the same size as obj.

8.2.53.28 string.upper

[Method]out = upper (obj)
Convert to upper case.

Converts all the characters in all the strings in obj to upper case.

This currently delegates to Octave’s own upper() function to do the conversion, so
whatever character class handling it has, this has.

Returns a string array of the same size as obj.

8.2.54 struct2table

[Function]out = struct2table (s)
[Function]out = struct2table (..., 'AsArray', AsArray)

Convert struct to a table.

Converts the input struct s to a table.

s may be a scalar struct or a nonscalar struct array.

The AsArray option is not implemented yet.

Returns a table.

Chapter 8: API Reference 51

8.2.55 table

[Class]table
Tabular data array containing multiple columnar variables.

A table is a tabular data structure that collects multiple parallel named variables.
Each variable is treated like a column. (Possibly a multi-columned column, if that
makes sense.) The types of variables may be heterogeneous.

A table object is like an SQL table or resultset, or a relation, or a DataFrame in R
or Pandas.

A table is an array in itself: its size is nrows-by-nvariables, and you can index along
the rows and variables by indexing into the table along dimensions 1 and 2.

A note on accessing properties of a table array: Because .-indexing is used to access
the variables inside the array, it can’t also be directly used to access properties as well.
Instead, do t.Properties.<property> for a table t. That will give you a property
instead of a variable. (And due to this mechanism, it will cause problems if you have
a table with a variable named Properties. Try to avoid that.)

WARNING ABOUT HANDLE CLASSES IN TABLE VARIABLES

Using a handle class in a table variable (column) value may lead to unpredictable and
buggy behavior! A handle class array is a reference type, and it holds shared mutable
state, which may be shared with references to it in other table arrays or outside the
table array. The table class makes no guarantees about what it will or will not do
internally with arrays that are held in table variables, and any operation on a table
holding handle arrays may have unpredictable and undesirable side effects. These
side effects may change between versions of Tablicious.

We currently recommend that you do not use handle classes in table variables. It
may be okay to use handle classes *inside* cells or other non-handle composite types
that are used in table variables, but this hasn’t been fully thought through or tested.

See also: tblish.table.grpstats, tblish.evalWithTableVars, tblish.examples.SpDb

[Instance Variable of table]cellstr VariableNames
The names of the variables in the table, as a cellstr row vector.

[Instance Variable of table]cell VariableValues
A cell vector containing the values for each of the variables. VariableValues(i)

corresponds to VariableNames(i).

[Instance Variable of table]cellstr RowNames
An optional list of row names that identify each row in the table. This is a cellstr
column vector, if present.

[Instance Variable of table]cellstr DimensionNames
Names for the two dimensions of the table array, as a cellstr row vector. Always
exactly 2-long, because tables are always exactly 2-D. Defaults to {"Row",

"Variables"}. (I feel the singular "Row" and plural "Variables" here are
inconsistent, but that’s what Matlab uses, so Tablicious uses it too, for Matlab
compatibility.)

Chapter 8: API Reference 52

8.2.55.1 table.addvars

[Method]out = addvars (obj, var1, ..., varN)
[Method]out = addvars (..., 'Before', Before)
[Method]out = addvars (..., 'After', After)
[Method]out = addvars (..., 'NewVariableNames', NewVariableNames)

Add variables to table.

Adds the specified variables to a table.

8.2.55.2 table.antijoin

[Method][outA, ixA, outB, ixB] = antijoin (A, B)
Natural antijoin (AKA “semidifference”).

Computes the anti-join of A and B. The anti-join is defined as all the rows from one
input which do not have matching rows in the other input.

Returns: outA - all the rows in A with no matching row in B ixA - the row indexes
into A which produced outA outB - all the rows in B with no matching row in A ixB
- the row indexes into B which produced outB

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

8.2.55.3 table.cartesian

[Method][out, ixs] = cartesian (A, B)
Cartesian product of two tables.

Computes the Cartesian product of two tables. The Cartesian product is each row in
A combined with each row in B.

Due to the definition and structural constraints of table, the two inputs must have
no variable names in common. It is an error if they do.

The Cartesian product is seldom used in practice. If you find yourself calling this
method, you should step back and re-evaluate what you are doing, asking yourself if
that is really what you want to happen. If nothing else, writing a function that calls
cartesian() is usually much less efficient than alternate ways of arriving at the same
result.

This implementation does not remove duplicate values. TODO: Determine whether
this duplicate-removing behavior is correct.

The ordering of the rows in the output is not specified, and may be implementation-
dependent. TODO: Determine if we can lock this behavior down to a fixed, defined
ordering, without killing performance.

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

8.2.55.4 table.convertvars

[Method]out = convertvars (obj, vars, dataType)
Convert variables to specified data type.

Converts the variables in obj specified by vars to the specified data type.

vars is a cellstr or numeric vector specifying which variables to convert.

Chapter 8: API Reference 53

dataType specifies the data type to convert those variables to. It is either a char hold-
ing the name of the data type, or a function handle which will perform the conversion.
If it is the name of the data type, there must either be a one-arg constructor of that
type which accepts the specified variables’ current types as input, or a conversion
method of that name defined on the specified variables’ current type.

Returns a table with the same variable names as obj, but with converted types.

8.2.55.5 table.findgroups

[Method][G, TID] = findgroups (obj)
Find groups within a table’s row values.

Finds groups within a table’s row values and get group numbers. A group is a set of
rows that have the same values in all their variable elements.

Returns: G - A double column vector of group numbers created from obj. TID - A
table containing the row values corresponding to the group numbers.

8.2.55.6 table.getvar

[Method][out, name] = getvar (obj, varRef)
Get value and name for single table variable.

varRef is a variable reference. It may be a name or an index. It may only specify a
single table variable.

Returns: out – the value of the referenced table variable name – the name of the
referenced table variable

8.2.55.7 table.getvars

[Method][out1, ...] = getvars (obj, varRef)
Get values for one ore more table variables.

varRef is a variable reference in the form of variable names or indexes.

Returns as many outputs as varRef referenced variables. Each output contains the
contents of the corresponding table variable.

8.2.55.8 table.groupby

[Method][out] = groupby (obj, groupvars, aggcalcs)
Find groups in table data and apply functions to variables within groups.

This works like an SQL "SELECT ... GROUP BY ..." statement.

groupvars (cellstr, numeric) is a list of the grouping variables, identified by name or
index.

aggcalcs is a specification of the aggregate calculations to perform on them, in the
form {out var, fcn, in vars; ...}, where: out var (char) is the name of the output
variable fcn (function handle) is the function to apply to produce it in vars (cellstr)
is a list of the input variables to pass to fcn

Returns a table.

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

Chapter 8: API Reference 54

8.2.55.9 table.height

[Method]out = height (obj)
Number of rows in table.

For a zero-variable table, this currently always returns 0. This is a bug, and will
change in the future. It should be possible for zero-variable table arrays to have any
number of rows.

8.2.55.10 table.horzcat

[Method]out = horzcat (varargin)
Horizontal concatenation.

Combines tables by horizontally concatenating them. Inputs that are not tables are
automatically converted to tables by calling table() on them. Inputs must have all
distinct variable names.

Output has the same RowNames as varargin{1}. The variable names and values are
the result of the concatenation of the variable names and values lists from the inputs.

8.2.55.11 table.innerjoin

[Method][out, ixa, ixb] = innerjoin (A, B)
[Method][...] = innerjoin (A, B, ...)

Combine two tables by rows using key variables.

Computes the relational inner join between two tables. “Inner” means that only rows
which had matching rows in the other input are kept in the output.

TODO: Document options.

Returns: out - A table that is the result of joining A and B ix - Indexes into A for
each row in out ixb - Indexes into B for each row in out

8.2.55.12 table.intersect

[Method][C, ia, ib] = intersect (A, B)
Set intersection.

Computes the intersection of two tables. The intersection is defined to be the unique
row values which are present in both of the two input tables.

Returns: C - A table containing all the unique row values present in both A and B.
ia - Row indexes into A of the rows from A included in C. ib - Row indexes into B of
the rows from B included in C.

8.2.55.13 table.isempty

[Method]out = isempty (obj)
Test whether array is empty.

For tables, isempty is true if the number of rows is 0 or the number of variables is 0.

Chapter 8: API Reference 55

8.2.55.14 table.ismember

[Method][tf, loc] = ismember (A, B)
Set membership.

Finds rows in A that are members of B.

Returns: tf - A logical vector indicating whether each A(i,:) was present in B. loc -
Indexes into B of rows that were found.

8.2.55.15 table.ismissing

[Method]out = ismissing (obj)
[Method]out = ismissing (obj, indicator)

Find missing values.

Finds missing values in obj’s variables.

If indicator is not supplied, uses the standard missing values for each variable’s data
type. If indicator is supplied, the same indicator list is applied across all variables.

All variables in this must be vectors. (This is due to the requirement that size(out)
== size(obj).)

Returns a logical array the same size as obj.

8.2.55.16 table.istable

[Method]tf = istable (obj)
True if input is a table.

8.2.55.17 table.join

[Method][C, ib] = join (A, B)
[Method][C, ib] = join (A, B, ...)

Combine two tables by rows using key variables, in a restricted form.

This is not a "real" relational join operation. It has the restrictions that: 1) The key
values in B must be unique. 2) Every key value in A must map to a key value in B.
These are restrictions inherited from the Matlab definition of table.join.

You probably don’t want to use this method. You probably want to use innerjoin or
outerjoin instead.

See also: Section 8.2.55.11 [table.innerjoin], page 54, Section 8.2.55.23
[table.outerjoin], page 56,

8.2.55.18 table.mergevars

[Method]out = mergevars (obj, vars)
[Method]out = mergevars (..., 'NewVariableName', NewVariableName)
[Method]out = mergevars (..., 'MergeAsTable', MergeAsTable)

Merge table variables into a single variable.

Chapter 8: API Reference 56

8.2.55.19 table.movevars

[Method]out = movevars (obj, vars, relLocation, location)
Move around variables in a table.

vars is a list of variables to move, specified by name or index.

relLocation is 'Before' or 'After'.

location indicates a single variable to use as the target location, specified by name or
index. If it is specified by index, it is the index into the list of *unmoved* variables
from obj, not the original full list of variables in obj.

Returns a table with the same variables as obj, but in a different order.

8.2.55.20 table.ndims

[Method]out = ndims (obj)
Number of dimensions

For tables, ndims(obj) is always 2, because table arrays are always 2-D (rows-by-
columns).

8.2.55.21 table.numel

[Method]out = numel (obj)
Total number of elements in table (actually 1).

For compatibility reasons with Octave’s OOP interface and subsasgn behavior, table’s
numel is defined to always return 1. It is not useful for client code to query a table’s
size using numel. This is an incompatibility with Matlab.

8.2.55.22 table.outerfillvals

[Method]out = outerfillvals (obj)
Get fill values for outer join.

Returns a table with the same variables as this, but containing only a single row
whose variable values are the values to use as fill values when doing an outer join.

8.2.55.23 table.outerjoin

[Method][out, ixa, ixb] = outerjoin (A, B)
[Method][...] = outerjoin (A, B, ...)

Combine two tables by rows using key variables, retaining unmatched rows.

Computes the relational outer join of tables A and B. This is like a regular join, but
also includes rows in each input which did not have matching rows in the other input;
the columns from the missing side are filled in with placeholder values.

TODO: Document options.

Returns: out - A table that is the result of the outer join of A and B ixa - indexes
into A for each row in out ixb - indexes into B for each row in out

Chapter 8: API Reference 57

8.2.55.24 table.prettyprint

[Method]prettyprint (obj)
Display table’s values in tabular format. This prints the contents of the table in
human-readable, tabular form.

Variables which contain objects are displayed using the strings returned by their
dispstrs method, if they define one.

8.2.55.25 table.realjoin

[Method][out, ixs] = realjoin (A, B)
[Method][...] = realjoin (A, B, ...)

"Real" relational inner join, without key restrictions

Performs a "real" relational natural inner join between two tables, without the key
restrictions that JOIN imposes.

Currently does not support tables which have RowNames. This may be added in the
future.

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

Name/value option arguments are: Keys, LeftKeys, RightKeys, LeftVariables,
RightVariables.

FIXME: Document those options.

Returns: out - A table that is the result of joining A and B ixs - Indexes into A for
each row in out

8.2.55.26 table.removevars

[Method]out = removevars (obj, vars)
Remove variables from table.

Deletes the variables specified by vars from obj.

vars may be a char, cellstr, numeric index vector, or logical index vector.

8.2.55.27 table.renamevars

[Method]out = renamevars (obj, renameMap)
Rename variables in a table.

Renames selected variables in the table obj based on the mapping provided in
renameMap.

renameMap is an n-by-2 cellstr array, with the old variable names in the first column,
and the corresponding new variable names in the second column.

Variables which are not included in renameMap are not modified.

It is an error if any variables named in the first column of renameMap are not present
in obj.

Renames

Chapter 8: API Reference 58

8.2.55.28 table.repelem

[Method]out = repelem (obj, R)
[Method]out = repelem (obj, R_1, R_2)

Replicate elements of matrix.

Replicates elements of this table matrix by applying repelem to each of its variables.
This

Only two dimensions are supported for repelem on tables.

8.2.55.29 table.repmat

[Method]out = repmat (obj, sz)
Replicate matrix.

Repmats a table by repmatting each of its variables vertically.

For tables, repmatting is only supported along dimension 1. That is, the values of
sz(2:end) must all be exactly 1. This behavior may change in the future to support
repmatting horizontally, with the added variable names being automatically changed
to maintain uniqueness of variable names within the resulting table.

Returns a new table with the same variable names and types as tbl, but with a
possibly different row count.

8.2.55.30 table.restrict

[Method]out = restrict (obj, expr)
[Method]out = restrict (obj, ix)

Subset rows using variable expression or index.

Subsets a table row-wise, using either an index vector or an expression involving obj’s
variables.

If the argument is a numeric or logical vector, it is interpreted as an index into the
rows of this. (Just as with ‘subsetrows (this, index)‘.)

If the argument is a char, then it is evaulated as an M-code expression, with all of this’
variables available as workspace variables, as with tblish.evalWithTableVars. The
output of expr must be a numeric or logical index vector (This form is a shorthand
for out = subsetrows (this, tblish.evalWithTableVars (this, expr)).)

TODO: Decide whether to name this to "where" to be more like SQL instead of
relational algebra.

Examples:

[s,p,sp] = tblish.examples.SpDb;

prettyprint (restrict (p, 'Weight >= 14 & strcmp(Color, "Red")'))

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

See also: tblish.evalWithTableVars

Chapter 8: API Reference 59

8.2.55.31 table.rowfun

[Method]out = varfun (func, obj)
[Method]out = varfun (..., 'OptionName', OptionValue, ...)

Apply function to rows in table and collect outputs.

This applies the function func to the elements of each row of obj’s variables, and
collects the concatenated output(s) into the variable(s) of a new table.

func is a function handle. It should take as many inputs as there are variables in
obj. Or, it can take a single input, and you must specify 'SeparateInputs', false

to have the input variables concatenated before being passed to func. It may return
multiple argouts, but to capture those past the first one, you must explicitly specify
the 'NumOutputs' or 'OutputVariableNames' options.

Supported name/value options:

'OutputVariableNames'

Names of table variables to store combined function output arguments
in.

'NumOutputs'

Number of output arguments to call function with. If omitted, defaults
to number of items in OutputVariableNames if it is supplied, otherwise
defaults to 1.

'SeparateInputs'

If true, input variables are passed as separate input arguments to func.
If false, they are concatenated together into a row vector and passed as
a single argument. Defaults to true.

'ErrorHandler'

A function to call as a fallback when calling func results in an error. It
is passed the caught exception, along with the original inputs passed to
func, and it has a “second chance” to compute replacement values for
that row. This is useful for converting raised errors to missing-value fill
values, or logging warnings.

'ExtractCellContents'

Whether to “pop out” the contents of the elements of cell variables in obj,
or to leave them as cells. True/false; default is false. If you specify this
option, then obj may not have any multi-column cell-valued variables.

'InputVariables'

If specified, only these variables from obj are used as the function inputs,
instead of using all variables.

'GroupingVariables'

Not yet implemented.

'OutputFormat'

The format of the output. May be 'table' (the default), 'uniform', or
'cell'. If it is 'uniform' or 'cell', the output variables are returned
in multiple output arguments from 'rowfun'.

Chapter 8: API Reference 60

Returns a table whose variables are the collected output arguments of func if Output-
Format is 'table'. Otherwise, returns multiple output arguments of whatever type
func returned (if OutputFormat is 'uniform') or cells (if OutputFormat is 'cell').

8.2.55.32 table.rows2vars

[Method]out = rows2vars (obj)
[Method]out = rows2vars (obj, 'VariableNamesSource',

VariableNamesSource)
[Method]out = rows2vars (..., 'DataVariables', DataVariables)

Reorient table, swapping rows and variables dimensions.

This flips the dimensions of the given table obj, swapping the orientation of the
contained data, and swapping the row names/labels and variable names.

The variable names become a new variable named “OriginalVariableNames”.

The row names are drawn from the column VariableNamesSource if it is specified.
Otherwise, if obj has row names, they are used. Otherwise, new variable names in
the form “VarN” are generated.

If all the variables in obj are of the same type, they are concatenated and then sliced
to create the new variable values. Otherwise, they are converted to cells, and the new
table has cell variable values.

8.2.55.33 table.semijoin

[Method][outA, ixA, outB, ixB] = semijoin (A, B)
Natural semijoin.

Computes the natural semijoin of tables A and B. The semi-join of tables A and B
is the set of all rows in A which have matching rows in B, based on comparing the
values of variables with the same names.

This method also computes the semijoin of B and A, for convenience.

Returns: outA - all the rows in A with matching row(s) in B ixA - the row indexes
into A which produced outA outB - all the rows in B with matching row(s) in A ixB
- the row indexes into B which produced outB

This is a Tablicious/Octave extension, not defined in the Matlab table interface.

8.2.55.34 table.setdiff

[Method][C, ia] = setdiff (A, B)
Set difference.

Computes the set difference of two tables. The set difference is defined to be the
unique row values which are present in table A that are not in table B.

Returns: C - A table containing the unique row values in A that were not in B. ia -
Row indexes into A of the rows from A included in C.

Chapter 8: API Reference 61

8.2.55.35 table.setDimensionNames

[Method]out = setDimensionNames (obj, names)
[Method]out = setDimensionNames (obj, ix, names)

Set dimension names.

Sets the DimensionNames for this table to a new list of names.

names is a char or cellstr vector. It must have the same number of elements as the
number of dimension names being assigned.

ix is an index vector indicating which dimension names to set. If omitted, it sets all
two of them. Since there are always two dimension, the indexes in ix may never be
higher than 2.

This method exists because the obj.Properties.DimensionNames = ... assignment
form did not originally work, possibly due to an Octave bug, or more likely due
to a bug in Tablicious prior to the early 0.4.x versions. That was fixed around
0.4.4. This method may be deprecated and removed at some point, since it is
not part of the standard Matlab table interface, and is now redundant with the
obj.Properties.DimensionNames = ... assignment form.

8.2.55.36 table.setRowNames

[Method]out = setRowNames (obj, names)
Set row names.

Sets the row names on obj to names.

names is a cellstr column vector, with the same number of rows as obj has.

8.2.55.37 table.setvar

[Method]out = setvar (obj, varRef, value)
Set value for a variable in table.

This sets (adds or replaces) the value for a variable in obj. It may be used to change
the value of an existing variable, or add a new variable.

This method exists primarily because I cannot get obj.foo = value to work, appar-
ently due to an issue with Octave’s subsasgn support.

varRef is a variable reference, either the index or name of a variable. If you are
adding a new variable, it must be a name, and not an index.

value is the value to set the variable to. If it is scalar or a single string as charvec, it
is scalar-expanded to match the number of rows in obj.

8.2.55.38 table.setVariableNames

[Method]out = setVariableNames (obj, names)
[Method]out = setVariableNames (obj, ix, names)

Set variable names.

Sets the VariableNames for this table to a new list of names.

names is a char or cellstr vector. It must have the same number of elements as the
number of variable names being assigned.

Chapter 8: API Reference 62

ix is an index vector indicating which variable names to set. If omitted, it sets all of
them present in obj.

This method exists because the obj.Properties.VariableNames = ... assignment
form does not work, possibly due to an Octave bug.

8.2.55.39 table.setxor

[Method][C, ia, ib] = setxor (A, B)
Set exclusive OR.

Computes the setwise exclusive OR of two tables. The set XOR is defined to be the
unique row values which are present in one or the other of the two input tables, but
not in both.

Returns: C - A table containing all the unique row values in the set XOR of A and
B. ia - Row indexes into A of the rows from A included in C. ib - Row indexes into
B of the rows from B included in C.

8.2.55.40 table.size

[Method]sz = size (obj)
[Method][nr, nv] = size (obj)
[Method][nr, nv, ...] = size (obj)

Gets the size of a table.

For tables, the size is [number-of-rows x number-of-variables]. This is the same as
[height(obj), width(obj)].

8.2.55.41 table.splitapply

[Method]out = splitapply (func, obj, G)
[Method][Y1, ..., YM] = splitapply (func, obj, G)

Split table data into groups and apply function.

Performs a splitapply, using the variables in obj as the input X variables to the
splitapply function call.

See also: splitapply, table.groupby, tblish.table.grpstats

8.2.55.42 table.splitvars

[Method]out = splitvars (obj)
[Method]out = splitvars (obj, vars)
[Method]out = splitvars (..., 'NewVariableNames', NewVariableNames)

Split multicolumn table variables.

Splits multicolumn table variables into new single-column variables. If vars is sup-
plied, splits only those variables. If vars is not supplied, splits all multicolumn vari-
ables.

8.2.55.43 table.squeeze

[Method]obj = squeeze (obj)
Remove singleton dimensions.

Chapter 8: API Reference 63

For tables, this is always a no-op that returns the input unmodified, because tables
always have exactly 2 dimensions, and 2-D arrays are unaffected by squeeze.

8.2.55.44 table.stack

[Method]out = stack (obj, vars)
[Method]out = stack (..., 'NewDataVariableName',

NewDataVariableName)
[Method]out = stack (..., 'IndexVariableName', IndexVariableName)

Stack multiple table variables into a single variable.

8.2.55.45 table.summary

[Method]summary (obj)
Display a summary of a table’s data.

Displays a summary of data in the input table. This will contain some statistical
information on each of its variables. The output is printed to the Octave console
(command window, stdout, or the like in your current session), in a format suited
for human consumption. The output format is not fixed or formally defined, and
may change over time. It is only suitable for human display, and not for parsing or
programmatic use.

This method supports, to some degree, extension by other packages. If your Octave
session has loaded other packages which supply extension implementaions of ‘sum-
mary‘, Tablicious will use those in preference to its own internal implementation, and
you will get different, and hopefully better, output.

8.2.55.46 table.table

[Constructor]obj = table ()
Constructs a new empty (0 rows by 0 variables) table.

[Constructor]obj = table (var1, var2, ..., varN)
Constructs a new table from the given variables. The variables passed as inputs to
this constructor become the variables of the table. Their names are automatically
detected from the input variable names that you used.

Note: If you call the constructor with exactly three arguments, and the first argu-
ment is exactly the value ’ tblish backdoor ’, that will trigger a special internal-use
backdoor calling form, and you will get incorrect results. This is a bug in Tablicious.

[Constructor]obj = table ('Size', sz, 'VariableTypes', varTypes)
Constructs a new table of the given size, and with the given variable types. The
variables will contain the default value for elements of that type.

[Constructor]obj = table (..., 'VariableNames', varNames)
[Constructor]obj = table (..., 'RowNames', rowNames)

Specifies the variable names or row names to use in the constructed table. Overrides
the implicit names garnered from the input variable names.

Chapter 8: API Reference 64

8.2.55.47 table.table2array

[Method]s = table2struct (obj)
Converts obj to a homogeneous array.

8.2.55.48 table.table2cell

[Method]c = table2cell (obj)
Converts table to a cell array. Each variable in obj becomes one or more columns in
the output, depending on how many columns that variable has.

Returns a cell array with the same number of rows as obj, and with as many or more
columns as obj has variables.

8.2.55.49 table.table2struct

[Method]s = table2struct (obj)
[Method]s = table2struct (..., 'ToScalar', trueOrFalse)

Converts obj to a scalar structure or structure array.

Row names are not included in the output struct. To include them, you must
add them manually: s = table2struct (tbl, ’ToScalar’, true); s.RowNames =
tbl.Properties.RowNames;

Returns a scalar struct or struct array, depending on the value of the ToScalar option.

8.2.55.50 table.union

[Method][C, ia, ib] = union (A, B)
Set union.

Computes the union of two tables. The union is defined to be the unique row values
which are present in either of the two input tables.

Returns: C - A table containing all the unique row values present in A or B. ia - Row
indexes into A of the rows from A included in C. ib - Row indexes into B of the rows
from B included in C.

8.2.55.51 table.varfun

[Method]out = varfun (fcn, obj)
[Method]out = varfun (..., 'OutputFormat', outputFormat)
[Method]out = varfun (..., 'InputVariables', vars)
[Method]out = varfun (..., 'ErrorHandler', errorFcn)

Apply function to table variables.

Applies the given function fcn to each variable in obj, collecting the output in a table,
cell array, or array of another type.

8.2.55.52 table.varnames

[Method]out = varnames (obj)
[Method]out = varnames (obj, varNames)

Get or set variable names for a table.

Returns cellstr in the getter form. Returns an updated datetime in the setter form.

Chapter 8: API Reference 65

8.2.55.53 table.vertcat

[Method]out = vertcat (varargin)
Vertical concatenation.

Combines tables by vertically concatenating them.

Inputs that are not tables are automatically converted to tables by calling table() on
them.

The inputs must have the same number and names of variables, and their variable
value types and sizes must be cat-compatible. The types of the resulting variables are
the types that result from doing a ‘vertcat()‘ on the variables from the corresponding
input tables, in the order they were input in.

8.2.55.54 table.width

[Method]out = width (obj)
Number of variables in table.

Note that this is not the sum of the number of columns in each variable. It is just
the number of variables.

8.2.56 tableOuterFillValue

Not documented

8.2.57 tail

[Function]out = tail (A)
[Function]out = tail (A, k)

Get last K rows of an array.

Returns the array A, subsetted to its last k rows. This means subsetting it to the last
(min (k, size (A, 1))) elements along dimension 1, and leaving all other dimensions
unrestricted.

A is the array to subset.

k is the number of rows to get. k defaults to 8 if it is omitted or empty.

If there are less than k rows in A, returns all rows.

Returns an array of the same type as A, unless ()-indexing A produces an array of a
different type, in which case it returns that type.

See also: head

8.2.58 tblish.dataset

[Class]tblish.dataset
The tblish.dataset class provides convenient access to the various datasets included
with Tablicious.

This class just contains a bunch of static methods, each of which loads the dataset
of that name. It is provided as a convenience so you can use tab completion or other
run-time introspection on the dataset list.

Chapter 8: API Reference 66

8.2.58.1 tblish.dataset.airmiles

[Static Method]out = airmiles ()
Passenger Miles on Commercial US Airlines, 1937-1960

Description

The revenue passenger miles flown by commercial airlines in the United States for
each year from 1937 to 1960.

Source

F.A.A. Statistical Handbook of Aviation.

Examples

t = tblish.dataset.airmiles;

plot (t.year, t.miles);

title ("airmiles data");

xlabel ("Passenger-miles flown by U.S. commercial airlines")

ylabel ("airmiles");

8.2.58.2 tblish.dataset.AirPassengers

[Static Method]out = AirPassengers ()
Monthly Airline Passenger Numbers 1949-1960

Description

The classic Box & Jenkins airline data. Monthly totals of international airline pas-
sengers, 1949 to 1960.

Source

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976). Time Series Analysis,
Forecasting and Control. Third Edition. San Francisco: Holden-Day. Series G.

Examples

TODO: This example needs to be ported from R.

8.2.58.3 tblish.dataset.airquality

[Static Method]out = airquality ()
New York Air Quality Measurements from 1973

Description

Daily air quality measurements in New York, May to September 1973.

Chapter 8: API Reference 67

Format

Ozone Ozone concentration (ppb)

SolarR Solar R (lang)

Wind Wind (mph)

Temp Temperature (degrees F)

Month Month (1-12)

Day Day of month (1-31)

Source

New York State Department of Conservation (ozone data) and the National Weather
Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983). Graphical
Methods for Data Analysis. Belmont, CA: Wadsworth.

Examples

t = tblish.dataset.airquality

Plot a scatter-plot plus a fitted line, for each combination of measurements

vars = {"Ozone", "SolarR", "Wind", "Temp" "Month", "Day"};

n_vars = numel (vars);

figure;

for i = 1:n_vars

for j = 1:n_vars

if (i == j)

continue

endif

ix_subplot = (n_vars * (j - 1) + i);

hax = subplot (n_vars, n_vars, ix_subplot);

var_x = vars{i};

var_y = vars{j};

x = t.(var_x);

y = t.(var_y);

scatter (hax, x, y, 10);

Fit a cubic line to these points

TODO: Find out exactly what kind of fitted line R's example is using, and

port that.

hold on

p = polyfit (x, y, 3);

x_hat = unique(x);

p_y = polyval (p, x_hat);

plot (hax, x_hat, p_y, "r");

endfor

endfor

Chapter 8: API Reference 68

8.2.58.4 tblish.dataset.anscombe

[Static Method]out = anscombe ()
Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Four sets of x/y pairs which have the same statistical properties, but are very different.

Format

The data comes in an array of 4 structs, each with fields as follows:

x The X values for this pair.

y The Y values for this pair.

Source

Tufte, Edward R. (1989). The Visual Display of Quantitative Information. 13–14.
Cheshire, CT: Graphics Press.

References

Anscombe, Francis J. (1973). Graphs in statistical analysis. The American Statisti-
cian, 27, 17–21.

Examples

data = tblish.dataset.anscombe

Pick good limits for the plots

all_x = [data.x];

all_y = [data.y];

x_limits = [min(0, min(all_x)) max(all_x)*1.2];

y_limits = [min(0, min(all_y)) max(all_y)*1.2];

Do regression on each pair and plot the input and results

figure;

haxs = NaN (1, 4);

for i_pair = 1:4

x = data(i_pair).x;

y = data(i_pair).y;

TODO: Port the anova and other characterizations from the R code

TODO: Do a linear regression and plot its line

hax = subplot (2, 2, i_pair);

haxs(i_pair) = hax;

xlabel (sprintf ("x%d", i_pair));

ylabel (sprintf ("y%d", i_pair));

scatter (x, y, "r");

endfor

Chapter 8: API Reference 69

Fiddle with the plot axes parameters

linkaxes (haxs);

xlim (haxs(1), x_limits);

ylim (haxs(1), y_limits);

8.2.58.5 tblish.dataset.attenu

[Static Method]out = attenu ()
Joyner-Boore Earthquake Attenuation Data

Description

Event data for 23 earthquakes in California, showing peak accelerations.

Format

event Event number

mag Moment magnitude

station Station identifier

dist Station-hypocenter distance (km)

accel Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration
and velocity from strong-motion records including records from the 1979 Imperial
Valley, California earthquake. USGS Open File report 81-365. Menlo Park, CA.

References

Boore, D. M. and Joyner, W. B. (1982). The empirical prediction of ground motion.
Bulletin of the Seismological Society of America, 72, S269–S268.

Examples

TODO: Port the example code from R

It does coplot() and pairs(), which are higher-level plotting tools

than core Octave provides. This could turn into a long example if we

just use base Octave here.

8.2.58.6 tblish.dataset.attitude

[Static Method]out = attitude ()
The Chatterjee-Price Attitude Data

Description

Aggregated data from a survey of clerical employees at a large financial organization.

Chapter 8: API Reference 70

Format

rating Overall rating.

complaints

Handling of employee complaints.

privileges

Does not allow special privileges.

learning Opportunity to learn.

raises Raises based on performance.

critical Too critical.

advance Advancement.

Source

Chatterjee, S. and Price, B. (1977). Regression Analysis by Example. New York:
Wiley. (Section 3.7, p.68ff of 2nd ed.(1991).)

Examples

t = tblish.dataset.attitude

tblish.examples.plot_pairs (t);

TODO: Display table summary

TODO: Whatever those statistical linear-model plots are that R is doing

8.2.58.7 tblish.dataset.austres

[Static Method]out = austres ()
Australian Population

Description

Numbers of Australian residents measured quarterly from March 1971 to March 1994.

Format

date The month of the observation.

residents

The number of residents.

Source

Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting.
New York: Springer-Verlag.

Chapter 8: API Reference 71

Examples

t = tblish.dataset.austres

plot (datenum (t.date), t.residents);

datetick x

xlabel ("Month"); ylabel ("Residents"); title ("Australian Residents");

8.2.58.8 tblish.dataset.beavers

[Static Method]out = beavers ()
Body Temperature Series of Two Beavers

Description

Body temperature readings for two beavers.

Format

day Day of observation (in days since the beginning of 1990), December 12–13
(beaver1) and November 3–4 (beaver2).

time Time of observation, in the form 0330 for 3:30am

temp Measured body temperature in degrees Celsius.

activ Indicator of activity outside the retreat.

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11
of Lange, N., Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J.
(Eds.) (1994) Case Studies in Biometry. New York: John Wiley and Sons.

Examples

TODO: This example needs to be ported from R.

8.2.58.9 tblish.dataset.BJsales

[Static Method]out = BJsales ()
Sales Data with Leading Indicator

Description

Sales Data with Leading Indicator

Format

record Index of the record.

lead Leading indicator.

sales Sales volume.

Chapter 8: API Reference 72

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data
Library at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

References

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting and
Control. San Francisco: Holden-Day. p. 537.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, Second
edition. New York: Springer-Verlag. p. 414.

Examples

TODO: Come up with example code here

8.2.58.10 tblish.dataset.BOD

[Static Method]out = BOD ()
Biochemical Oxygen Demand

Description

Contains biochemical oxygen demand versus time in an evaluation of water quality.

Format

Time Time of the measurement (in days).

demand Biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988). Nonlinear Regression Analysis and Its Appli-
cations. New York: John Wiley & Sons. Appendix A1.4.

Originally from: Marske (1967). Biochemical Oxygen Demand Data Interpretation
Using Sum of Squares Surface, M.Sc. Thesis, University of Wisconsin – Madison.

Examples

TODO: Port this example from R

8.2.58.11 tblish.dataset.cars

[Static Method]out = cars ()
Speed and Stopping Distances of Cars

Description

Speed of cars and distances taken to stop. Note that the data were recorded in the
1920s.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Chapter 8: API Reference 73

Format

speed Speed (mph).

dist Stopping distance (ft).

Source

Ezekiel, M. (1930). Methods of Correlation Analysis. New York: Wiley.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.cars;

TODO: Add Lowess smoothed lines to the plots

figure;

plot (t.speed, t.dist, "o");

xlabel ("Speed (mph)"); ylabel ("Stopping distance (ft)");

title ("cars data");

figure;

loglog (t.speed, t.dist, "o");

xlabel ("Speed (mph)"); ylabel ("Stopping distance (ft)");

title ("cars data (logarithmic scales)");

TODO: Do the linear model plot

Polynomial regression

figure;

plot (t.speed, t.dist, "o");

xlabel ("Speed (mph)"); ylabel ("Stopping distance (ft)");

title ("cars polynomial regressions");

hold on

xlim ([0 25]);

x2 = linspace (0, 25, 200);

for degree = 1:4

[P, S, mu] = polyfit (t.speed, t.dist, degree);

y2 = polyval(P, x2, [], mu);

plot (x2, y2);

endfor

Chapter 8: API Reference 74

8.2.58.12 tblish.dataset.ChickWeight

[Static Method]out = ChickWeight ()
Weight versus age of chicks on different diets

Format

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the mea-
surement was made.

Chick an ordered factor with levels 18 < ... < 48 giving a unique identifier for the
chick. The ordering of the levels groups chicks on the same diet together
and orders them according to their final weight (lightest to heaviest)
within diet.

Diet a factor with levels 1, ..., 4 indicating which experimental diet the chick
received.

Source

Crowder, M. and Hand, D. (1990). Analysis of Repeated Measures. London: Chap-
man and Hall. (example 5.3)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis. London:
Chapman and Hall. (table A.2)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS. New
York: Springer.

Examples

t = tblish.dataset.ChickWeight

tblish.examples.coplot (t, "Time", "weight", "Chick");

8.2.58.13 tblish.dataset.chickwts

[Static Method]out = chickwts ()
Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various
feed supplements on the growth rate of chickens.

Newly hatched chicks were randomly allocated into six groups, and each group was
given a different feed supplement. Their weights in grams after six weeks are given
along with feed types.

Format

weight Chick weight at six weeks (gm).

feed Feed type.

Chapter 8: API Reference 75

Source

Anonymous (1948) Biometrika, 35, 214.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

This example requires the statistics package from Octave Forge

t = tblish.dataset.chickwts

Boxplot by group

figure

g = groupby (t, "feed", {

"weight", @(x) {x}, "weight"

});

boxplot (g.weight, 1);

xlabel ("feed"); ylabel ("Weight at six weeks (gm)");

xticklabels ([{""} cellstr(g.feed')]);

Linear model

TODO: This linear model thing and anova

8.2.58.14 tblish.dataset.co2

[Static Method]out = co2 ()
Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and re-
ported in the preliminary 1997 SIO manometric mole fraction scale. Contains monthly
observations from 1959 to 1997.

Format

date Date of the month of the observation, as datetime.

co2 CO2 concentration (ppm).

Details

The values for February, March and April of 1964 were missing and have been obtained
by interpolating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), Univer-
sity of California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

Chapter 8: API Reference 76

References

Cleveland, W. S. (1993). Visualizing Data. New Jersey: Summit Press.

Examples

t = tblish.dataset.co2;

plot (datenum (t.date), t.co2);

datetick ("x");

xlabel ("Time"); ylabel ("Atmospheric concentration of CO2");

title ("co2 data set");

8.2.58.15 tblish.dataset.crimtab

[Static Method]out = crimtab ()
Student’s 3000 Criminals Data

Description

Data of 3000 male criminals over 20 years old undergoing their sentences in the chief
prisons of England and Wales.

Format

This dataset contains three separate variables. The finger_length and body_height

variables correspond to the rows and columns of the count matrix.

finger_length

Midpoints of intervals of finger lengths (cm).

body_height

Body heights (cm).

count Number of prisoners in this bin.

Details

Student is the pseudonym of William Sealy Gosset. In his 1908 paper he wrote
(on page 13) at the beginning of section VI entitled Practical Test of the forgoing
Equations:

“Before I had succeeded in solving my problem analytically, I had endeavoured to do
so empirically. The material used was a correlation table containing the height and
left middle finger measurements of 3000 criminals, from a paper by W. R. MacDonell
(Biometrika, Vol. I., p. 219). The measurements were written out on 3000 pieces of
cardboard, which were then very thoroughly shuffled and drawn at random. As each
card was drawn its numbers were written down in a book, which thus contains the
measurements of 3000 criminals in a random order. Finally, each consecutive set of 4
was taken as a sample—750 in all—and the mean, standard deviation, and correlation
of each sample etermined. The difference between the mean of each sample and the
mean of the population was then divided by the standard deviation of the sample,
giving us the z of Section III.”

Chapter 8: API Reference 77

The table is in fact page 216 and not page 219 in MacDonell(1902). In the MacDonell
table, the middle finger lengths were given in mm and the heights in feet/inches
intervals, they are both converted into cm here. The midpoints of intervals were used,
e.g., where MacDonell has “4’ 7"9/16 – 8"9/16”, we have 142.24 which is 2.54*56 =
2.54*(4’ 8").

MacDonell credited the source of data (page 178) as follows: “The data on which the
memoir is based were obtained, through the kindness of Dr Garson, from the Central
Metric Office, New Scotland Yard... He pointed out on page 179 that: “The forms
were drawn at random from the mass on the office shelves; we are therefore dealing
with a random sampling.”

Source

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt thanks to Jean R.
Lobry and Anne-Béatrice Dufour.

References

Garson, J.G. (1900). The metric system of identification of criminals, as used in in
Great Britain and Ireland. The Journal of the Anthropological Institute of Great
Britain and Ireland, 30, 161–198.

MacDonell, W.R. (1902). On criminal anthropometry and the identification of crim-
inals. Biometrika, 1(2), 177–227.

Student (1908). The probable error of a mean. Biometrika, 6, 1–25.

Examples

TODO: Port this from R

8.2.58.16 tblish.dataset.cupcake

[Static Method]out = cupcake ()
Google Search popularity for "cupcake", 2004-2019

Description

Monthly popularity of worldwide Google search results for "cupcake", 2004-2019.

Format

Month Month when searches took place

Cupcake An indicator of search volume, in unknown units

Source

Google Trends, https://trends.google.com/trends/explore?q=%2Fm%2F03p1r4&
date=all, retrieved 2019-05-04 by Andrew Janke.

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt
https://trends.google.com/trends/explore?q=%2Fm%2F03p1r4&date=all
https://trends.google.com/trends/explore?q=%2Fm%2F03p1r4&date=all

Chapter 8: API Reference 78

Examples

t = tblish.dataset.cupcake

plot (datenum (t.Month), t.Cupcake)

title ('“Cupcake” Google Searches'); xlabel ("Year"); ylabel ("Unknown popularity metric");

8.2.58.17 tblish.dataset.discoveries

[Static Method]out = discoveries ()
Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860
to 1959.

Format

year Year.

discoveries

Number of “great” discoveries that year.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.discoveries;

plot (t.year, t.discoveries);

xlabel ("Time"); ylabel ("Number of important discoveries");

title ("discoveries data set");

8.2.58.18 tblish.dataset.DNase

[Static Method]out = DNase ()
Elisa assay of DNase

Description

Data obtained during development of an ELISA assay for the recombinant protein
DNase in rat serum.

Format

Run Ordered categorical indicating the assay run.

Chapter 8: API Reference 79

conc Known concentration of the protein (ng/ml).

density Measured optical density in the assay (dimensionless).

Source

Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measure-
ment Data. London: Chapman & Hall. (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer.

Examples

t = tblish.dataset.DNase;

TODO: Port this from R

tblish.examples.coplot (t, "conc", "density", "Run", "PlotFcn", @scatter);

tblish.examples.coplot (t, "conc", "density", "Run", "PlotFcn", @loglog, ...

"PlotArgs", {"o"});

8.2.58.19 tblish.dataset.esoph

[Static Method]out = esoph ()
Smoking, Alcohol and Esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ille-et-Vilaine, France.

Format

item Age group (years).

alcgp Alcohol consumption (gm/day).

tobgp Tobacco consumption (gm/day).

ncases Number of cases.

ncontrols

Number of controls

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. Volume
1: The Analysis of Case-Control Studies. Oxford: IARC Lyon / Oxford University
Press.

Examples

TODO: Port this from R

TODO: Port the anova output

Chapter 8: API Reference 80

TODO: Port the fancy plot

This involves a "mosaic plot", which is not supported by Octave, so this will

take some work.

8.2.58.20 tblish.dataset.euro

[Static Method]out = euro ()
Conversion Rates of Euro Currencies

Description

Conversion rates between the various Euro currencies.

Format

This data comes in two separate variables.

euro An 11-long vector of the value of 1 Euro in all participating currencies.

euro_cross

An 11-by-11 matrix of conversion rates between various Euro currencies.

euro_date

The date upon which these Euro conversion rates were fixed.

Details

The data set euro contains the value of 1 Euro in all currencies participating in
the European monetary union (Austrian Schilling ATS, Belgian Franc BEF, German
Mark DEM, Spanish Peseta ESP, Finnish Markka FIM, French Franc FRF, Irish Punt
IEP, Italian Lira ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portuguese
Escudo PTE). These conversion rates were fixed by the European Union on December
31, 1998. To convert old prices to Euro prices, divide by the respective rate and round
to 2 digits.

Source

Unknown.

This example data set was derived from the R 3.6.0 example datasets, and they do
not specify a source.

Examples

TODO: Port this from R

TODO: Example conversion

TODO: "dot chart" showing euro-to-whatever conversion rates and vice versa

Chapter 8: API Reference 81

8.2.58.21 tblish.dataset.eurodist

[Static Method]out = eurodist ()
Distances Between European Cities and Between US Cities

Description

eurodist gives road distances (in km) between 21 cities in Europe. The data are
taken from a table in The Cambridge Encyclopaedia.

UScitiesD gives “straight line” distances between 10 cities in the US.

Format

eurodist ?????

TODO: Finish this.

Source

Crystal, D. Ed. (1990). The Cambridge Encyclopaedia. Cambridge: Cambridge
University Press.

The US cities distances were provided by Pierre Legendre.

Examples

8.2.58.22 tblish.dataset.EuStockMarkets

[Static Method]out = EuStockMarkets ()
Daily Closing Prices of Major European Stock Indices

Description

Contains the daily closing prices of major European stock indices: Germany DAX
(Ibis), Switzerland SMI, France CAC, and UK FTSE. The data are sampled in busi-
ness time, i.e., weekends and holidays are omitted.

Format

A multivariate time series with 1860 observations on 4 variables.

The starting date is the 130th day of 1991, with a frequency of 260 observations per
year.

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

Examples

t = tblish.dataset.EuStockMarkets;

The fact that we're doing this munging means that table might have

been the wrong structure for this data in the first place

Chapter 8: API Reference 82

t2 = removevars (t, "day");

index_names = t2.Properties.VariableNames;

day = 1:height (t2);

price = table2array (t2);

price0 = price(1,:);

rel_price = price ./ repmat (price0, [size(price, 1) 1]);

figure;

plot (day, rel_price);

legend (index_names);

xlabel ("Business day");

ylabel ("Relative price");

8.2.58.23 tblish.dataset.faithful

[Static Method]out = faithful ()
Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA.

Format

eruptions

Eruption time (mins).

waiting Waiting time to next eruption (mins).

Source

W. Härdle.

References

Härdle, W. (1991). Smoothing Techniques with Implementation in S. New York:
Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful
geyser. Applied Statistics, 39, 357–365.

Examples

t = tblish.dataset.faithful;

Munge the data, rounding eruption time to the second

Chapter 8: API Reference 83

e60 = 60 * t.eruptions;

ne60 = round (e60);

TODO: Port zapsmall to Octave

eruptions = ne60 / 60;

TODO: Display mean relative difference and bins summary

Histogram of rounded eruption times

figure

hist (ne60, max (ne60))

xlabel ("Eruption time (sec)")

ylabel ("n")

title ("faithful data: Eruptions of Old Faithful")

Scatter plot of eruption time vs waiting time

figure

scatter (t.eruptions, t.waiting)

xlabel ("Eruption time (min)")

ylabel ("Waiting time to next eruption (min)")

title ("faithful data: Eruptions of Old Faithful")

TODO: Port Lowess smoothing to Octave

8.2.58.24 tblish.dataset.Formaldehyde

[Static Method]out = Formaldehyde ()
Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the de-
termination of formaldehyde by the addition of chromatropic acid and concentrated
sulphuric acid and the reading of the resulting purple color on a spectrophotometer.

Format

record Observation record number.

carb Carbohydrate (ml).

optden Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954). Statistical Analysis in Chemistry and the
Chemical Industry. New York: Wiley.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.Formaldehyde;

Chapter 8: API Reference 84

figure

scatter (t.carb, t.optden)

TODO: Add a linear model line

xlabel ("Carbohydrate (ml)")

ylabel ("Optical Density")

title ("Formaldehyde data")

TODO: Add linear model summary output

TOD: Add linear model summary plot

8.2.58.25 tblish.dataset.freeny

[Static Method]out = freeny ()
Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Format

Freeny’s dataset consists of one observed dependent variable (revenue) and four ex-
planatory variables (lagged quartery revenue, price index, income level, and market
potential).

date Start date of the quarter for the observation.

y Observed quarterly revenue. TODO: Determine units (probably millions
of USD?)

lag_quarterly_revenue

Quarterly revenue (y), lagged 1 quarter.

price_index

A price index

income_level

??? TODO: Fill this in

market_potential

??? TODO: Fill this in

Source

Freeny, A. E. (1977). A Portable Linear Regression Package with Test Programs.
Bell Laboratories memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Chapter 8: API Reference 85

Examples

t = tblish.dataset.freeny;

summary (t)

tblish.examples.plot_pairs (removevars (t, "date"))

TODO: Create linear model and print summary

TODO: Linear model plot

8.2.58.26 tblish.dataset.HairEyeColor

[Static Method]out = HairEyeColor ()
Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Format

This data set comes in multiple variables

n A 3-dimensional array containing the counts of students in each bucket.
It is arranged as hair-by-eye-by-sex.

hair Hair colors for the indexes along dimension 1.

eye Eye colors for the indexes along dimension 2.

sex Sexes for the indexes along dimension 3.

Details

The Hair x Eye table comes rom a survey of students at the University of Delaware
reported by Snee (1974). The split by Sex was added by Friendly (1992a) for didactic
purposes.

This data set is useful for illustrating various techniques for the analysis of contingency
tables, such as the standard chi-squared test or, more generally, log-linear modelling,
and graphical methods such as mosaic plots, sieve diagrams or association plots.

Source

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas

Snee (1974) gives the two-way table aggregated over Sex. The Sex split of the ‘Brown
hair, Brown eye’ cell was changed to agree with that used by Friendly (2000).

References

Snee, R. D. (1974). Graphical display of two-way contingency tables. The American
Statistician, 28, 9–12.

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas

Chapter 8: API Reference 86

Friendly, M. (1992a). Graphical methods for categorical data. SAS User Group In-
ternational Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/
sugi/sugi17-paper.html

Friendly, M. (1992b). Mosaic displays for loglinear models. Proceedings of the Sta-
tistical Graphics Section, American Statistical Association, pp. 61–68. http://www.
math.yorku.ca/SCS/Papers/asa92.html

Friendly, M. (2000). Visualizing Categorical Data. SAS Institute, ISBN 1-58025-660-
0.

Examples

tblish.dataset.HairEyeColor

TODO: Aggregate over sex and display a table of counts

TODO: Port mosaic plot to Octave

8.2.58.27 tblish.dataset.Harman23cor

[Static Method]out = Harman23cor ()
Harman Example 2.3

Description

A correlation matrix of eight physical measurements on 305 girls between ages seven
and seventeen.

Format

cov An 8-by-8 correlation matrix.

names Names of the variables corresponding to the indexes of the correlation
matrix’s dimensions.

Source

Harman, H. H. (1976). Modern Factor Analysis, Third Edition Revised. Chicago:
University of Chicago Press. Table 2.3.

Examples

tblish.dataset.Harman23cor;

TODO: Port factanal to Octave

8.2.58.28 tblish.dataset.Harman74cor

[Static Method]out = Harman74cor ()
Harman Example 7.4

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

Chapter 8: API Reference 87

Description

A correlation matrix of 24 psychological tests given to 145 seventh and eighth-grade
children in a Chicago suburb by Holzinger and Swineford.

Format

cov A 2-dimensional correlation matrix.

vars Names of the variables corresponding to the indexes along the dimensions
of cov.

Source

Harman, H. H. (1976). Modern Factor Analysis, Third Edition Revised. Chicago:
University of Chicago Press. Table 7.4.

Examples

tblish.dataset.Harman74cor;

TODO: Port factanal to Octave

8.2.58.29 tblish.dataset.Indometh

[Static Method]out = Indometh ()
Pharmacokinetics of Indomethacin

Description

Data on the pharmacokinetics of indometacin (or, older spelling, ‘indomethacin’).

Format

Subject Subject identifier.

time Time since drug administration at which samples were drawn (hours).

conc Plasma concentration of indomethacin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indometacin.

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976). Kinetics of
Indomethacin absorption, elimination, and enterohepatic circulation in man. Journal
of Pharmacokinetics and Biopharmaceutics 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measure-
ment Data. London: Chapman & Hall. (section 5.2.4, p. 129)

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer.

Chapter 8: API Reference 88

8.2.58.30 tblish.dataset.infert

[Static Method]out = infert ()
Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional
logistic regression.

Format

education

Index of the record.

age Age in years of case.

parity Count.

induced Number of prior induced abortions, grouped into “0”, “1”, or “2 or more”.

case_status

0 = control, 1 = case.

spontaneous

Number of prior spontaneous abortions, grouped into “0”, “1”, or “2 or
more”.

stratum Matched set number.

pooled_stratum

Stratum number.

Note

One case with two prior spontaneous abortions and two prior induced abortions is
omitted.

Source

Trichopoulos et al (1976). Br. J. of Obst. and Gynaec. 83, 645–650.

Examples

t = tblish.dataset.infert;

TODO: Port glm() (generalized linear model) stuff to Octave

8.2.58.31 tblish.dataset.InsectSprays

[Static Method]out = InsectSprays ()
Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insec-
ticides.

Chapter 8: API Reference 89

Format

spray The type of spray.

count Insect count.

Source

Beall, G., (1942). The Transformation of data from entomological field experiments.
Biometrika, 29, 243–262.

References

McNeil, D. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.InsectSprays;

TODO: boxplot

TODO: AOV plots

8.2.58.32 tblish.dataset.iris

[Static Method]out = iris ()
The Fisher Iris dataset: measurements of various flowers

Description

This is the classic Fisher Iris dataset.

Format

Species The species of flower being measured.

SepalLength

Length of sepals, in centimeters.

SepalWidth

Width of sepals, in centimeters.

PetalLength

Length of petals, in centimeters.

PetalWidth

Width of petals, in centimeters.

Source

http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris

Chapter 8: API Reference 90

References

https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. An-
nals of Eugenics, 7, Part II, 179-188. also in Contributions to Mathematical Statistics
(John Wiley, NY, 1950).

Duda, R.O., & Hart, P.E. (1973). Pattern Classification and Scene Analysis.
(Q327.D83) New York: John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Penin-
sula. Bulletin of the American Iris Society, 59, 2–5.

Examples

TODO: Port this example from R

8.2.58.33 tblish.dataset.islands

[Static Method]out = islands ()
Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square
miles.

Format

name The name of the island.

area The area, in thousands of square miles.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.islands;

TODO: Port dot chart to Octave

8.2.58.34 tblish.dataset.JohnsonJohnson

[Static Method]out = JohnsonJohnson ()
Quarterly Earnings per Johnson & Johnson Share

Description

Quarterly earnings (dollars) per Johnson & Johnson share 1960–80.

https://en.wikipedia.org/wiki/Iris_flower_data_set

Chapter 8: API Reference 91

Format

date Start date of the quarter.

earnings Earnings per share (USD).

Source

Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and its Applications.
Second Edition. New York: Springer. Example 1.1.

Examples

t = tblish.dataset.JohnsonJohnson

TODO: Yikes, look at all those plots. Port them to Octave.

8.2.58.35 tblish.dataset.LakeHuron

[Static Method]out = LakeHuron ()
Level of Lake Huron 1875-1972

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Format

year Year of the measurement

level Lake level (ft).

Source

Brockwell, P. J. and Davis, R. A. (1991). Time Series and Forecasting Methods.
Second edition. New York: Springer. Series A, page 555.

Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting.
New York: Springer. Sections 5.1 and 7.6.

Examples

t = tblish.dataset.LakeHuron;

plot (t.year, t.level)

xlabel ("Year")

ylabel ("Lake level (ft)")

title ("Level of Lake Huron")

8.2.58.36 tblish.dataset.lh

[Static Method]out = lh ()
Luteinizing Hormone in Blood Samples

Chapter 8: API Reference 92

Description

A regular time series giving the luteinizing hormone in blood samples at 10 minute
intervals from a human female, 48 samples.

Format

sample The number of the observation.

lh Level of luteinizing hormone.

Source

P.J. Diggle (1990). Time Series: A Biostatistical Introduction. Oxford. Table A.1,
series 3.

Examples

t = tblish.dataset.lh;

plot (t.sample, t.lh);

xlabel ("Sample Number");

ylabel ("lh level");

8.2.58.37 tblish.dataset.LifeCycleSavings

[Static Method]out = LifeCycleSavings ()
Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Format

country Name of the country.

sr Aggregate personal savings.

pop15 Percentage of population under 15.

pop75 Percentage of population over 75.

dpi Real per-capita disposable income.

ddpi Percent growth rate of dpi.

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the sav-
ings ratio (aggregate personal saving divided by disposable income) is explained by
per-capita disposable income, the percentage rate of change in per-capita disposable
income, and two demographic variables: the percentage of population less than 15
years old and the percentage of the population over 75 years old. The data are av-
eraged over the decade 1960–1970 to remove the business cycle or other short-term
fluctuations.

Chapter 8: API Reference 93

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained
the data from Sterling (1977).

References

Sterling, Arnie (1977). Unpublished BS Thesis. Massachusetts Institute of Technol-
ogy.

Belsley, D. A., Kuh. E. and Welsch, R. E. (1980). Regression Diagnostics. New York:
Wiley.

Examples

t = tblish.dataset.LifeCycleSavings;

TODO: linear model

TODO: pairs plot with Lowess smoothed line

8.2.58.38 tblish.dataset.Loblolly

[Static Method]out = Loblolly ()
Growth of Loblolly pine trees

Description

Records of the growth of Loblolly pine trees.

Format

height Tree height (ft).

age Tree age (years).

Seed Seed source for the tree. Ordering is according to increasing maximum
height.

Source

Kung, F. H. (1986). Fitting logistic growth curve with predetermined carrying ca-
pacity. Proceedings of the Statistical Computing Section, American Statistical Asso-
ciation, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer.

Examples

t = tblish.dataset.Loblolly;

t2 = t(t.Seed == "329",:);

scatter (t2.age, t2.height)

xlabel ("Tree age (yr)");

Chapter 8: API Reference 94

ylabel ("Tree height (ft)");

title ("Loblolly data and fitted curve (Seed 329 only)")

TODO: Compute and plot fitted curve

8.2.58.39 tblish.dataset.longley

[Static Method]out = longley ()
Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear
regression.

Format

Year The year.

GNP_deflator

GNP implicit price deflator (1954=100).

GNP Gross National Product.

Unemployed

Number of unemployed.

Armed_Forces

Number of people in the armed forces.

Population

“Noninstitutionalized” population ≥ 14 years of age.

Employed Number of people employed.

Source

J. W. Longley (1967). An appraisal of least-squares programs from the point of view
of the user. Journal of the American Statistical Association, 62, 819–841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Examples

t = tblish.dataset.longley;

TODO: Linear model

TODO: opar plot

Chapter 8: API Reference 95

8.2.58.40 tblish.dataset.lynx

[Static Method]out = lynx ()
Annual Canadian Lynx trappings 1821-1934

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell &
Davis (1991), this appears to be the series considered by Campbell & Walker (1977).

Format

year Year of the record.

lynx Number of lynx trapped.

Source

Brockwell, P. J. and Davis, R. A. (1991). Time Series and Forecasting Methods.
Second edition. New York: Springer. Series G (page 557).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Campbell, M. J. and Walker, A. M. (1977). A Survey of statistical work on the
Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934
and a new analysis. Journal of the Royal Statistical Society series A, 140, 411–431.

Examples

t = tblish.dataset.lynx;

plot (t.year, t.lynx);

xlabel ("Year");

ylabel ("Lynx Trapped");

8.2.58.41 tblish.dataset.morley

[Static Method]out = morley ()
Michelson Speed of Light Data

Description

A classical data of Michelson (but not this one with Morley) on measurements done
in 1879 on the speed of light. The data consists of five experiments, each consisting
of 20 consecutive ‘runs’. The response is the speed of light measurement, suitably
coded (km/sec, with 299000 subtracted).

Format

Expt The experiment number, from 1 to 5.

Chapter 8: API Reference 96

Run The run number within each experiment.

Speed Speed-of-light measurement.

Details

The data is here viewed as a randomized block experiment with experiment and run

as the factors. run may also be considered a quantitative variate to account for linear
(or polynomial) changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986). A Genstat Primer. London: Edward Arnold.

S. M. Stigler (1977). Do robust estimators work with real data? Annals of Statistics
5, 1055–1098. (See Table 6.)

A. A. Michelson (1882). Experimental determination of the velocity of light made
at the United States Naval Academy, Annapolis. Astronomic Papers, 1, 135–8. U.S.
Nautical Almanac Office. (See Table 24.).

Examples

t = tblish.dataset.morley;

TODO: Port to Octave

8.2.58.42 tblish.dataset.mtcars

[Static Method]out = mtcars ()
Motor Trend 1974 Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel
consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973–74 models).

Format

mpg Fuel efficiency in miles/gallon

cyl Number of cylinders

disp Displacement (cu. in.)

hp Gross horsepower

drat Rear axle ratio

wt Weight (1,000 lbs)

qsec 1/4 mile time

vs Engine type (0 = V-shaped, 1 = straight)

am Transmission type (0 = automatic, 1 = manual)

Chapter 8: API Reference 97

gear Number of forward gears

carb Number of carburetors

Note

Henderson and Velleman (1981) comment in a footnote to Table 1: “Hocking [original
transcriber]’s noncrucial coding of the Mazda’s rotary engine as a straight six-cylinder
engine and the Porsche’s flat engine as a V engine, as well as the inclusion of the
diesel Mercedes 240D, have been retained to enable direct comparisons to be made
with previous analyses.”

Source

Henderson and Velleman (1981). Building multiple regression models interactively.
Biometrics, 37, 391–411.

Examples

TODO: Port this example from R

8.2.58.43 tblish.dataset.nhtemp

[Static Method]out = nhtemp ()
Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut,
from 1912 to 1971.

Format

year Year of the observation.

temp Mean annual temperature (degrees F).

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.nhtemp;

plot (t.year, t.temp);

title ("nhtemp data");

xlabel ("Mean annual temperature in New Haven, CT (deg. F)");

Chapter 8: API Reference 98

8.2.58.44 tblish.dataset.Nile

[Static Method]out = Nile ()
Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Aswan (formerly Assuan), 1871–
1970, in m^3, “with apparent changepoint near 1898” (Cobb(1978), Table 1, p.249).

Format

year Year of the record.

flow Annual flow (cubic meters).

Source

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods.
Oxford: Oxford University Press. http://www.ssfpack.com/DKbook.html

References

Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business and
Economic Statistics, 11, 81–92.

Cobb, G. W. (1978). The problem of the Nile: conditional solution to a change-point
problem. Biometrika 65, 243–51.

Examples

t = tblish.dataset.Nile;

figure

plot (t.year, t.flow);

TODO: Port the rest of the example to Octave

8.2.58.45 tblish.dataset.nottem

[Static Method]out = nottem ()
Average Monthly Temperatures at Nottingham, 1920-1939

Description

A time series object containing average air temperatures at Nottingham Castle in
degrees Fahrenheit for 20 years.

Format

record Index of the record.

lead Leading indicator.

sales Sales volume.

http://www.ssfpack.com/DKbook.html

Chapter 8: API Reference 99

Source

Anderson, O. D. (1976). Time Series Analysis and Forecasting: The Box-Jenkins
approach. London: Butterworths. Series R.

Examples

TODO: Come up with example code here

8.2.58.46 tblish.dataset.npk

[Static Method]out = npk ()
Classical N, P, K Factorial Experiment

Description

A classical N, P, K (nitrogen, phosphate, potassium) factorial experiment on the
growth of peas conducted on 6 blocks. Each half of a fractional factorial design
confounding the NPK interaction was used on 3 of the plots.

Format

block Which block (1 to 6).

N Indicator (0/1) for the application of nitrogen.

P Indicator (0/1) for the application of phosphate.

K Indicator (0/1) for the application of potassium.

yield Yield of peas, in pounds/plot. Plots were 1/70 acre.

Source

Imperial College, London, M.Sc. exercise sheet.

References

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth
edition. New York: Springer.

Examples

t = tblish.dataset.npk;

TODO: Port aov() and LM to Octave

8.2.58.47 tblish.dataset.occupationalStatus

[Static Method]out = occupationalStatus ()
Occupational Status of Fathers and their Sons

Description

Cross-classification of a sample of British males according to each subject’s occupa-
tional status and his father’s occupational status.

Chapter 8: API Reference 100

Format

An 8-by-8 matrix of counts, with classifying fators origin (father’s occupational
status, levels 1:8) and destination (son’s occupational status, levels 1:8).

Source

Goodman, L. A. (1979). Simple Models for the Analysis of Association in Cross-
Classifications having Ordered Categories. J. Am. Stat. Assoc., 74 (367), 537–552.

Examples

TODO: Come up with example code here

8.2.58.48 tblish.dataset.Orange

[Static Method]out = Orange ()
Growth of Orange Trees

Description

Records of the growth of orange trees.

Format

Tree A categorical indicating on which tree the measurement is made. Order-
ing is according to increasing maximum diameter.

age Age of the tree (days since 1968-12-31).

circumference

Trunk circumference (mm). This is probably “circumference at breast
height”, a standard measurement in forestry.

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data
Library at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

References

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis (3rd ed). New
York: Wiley. (exercise 24.N).

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer.

Examples

t = tblish.dataset.Orange;

TODO: Port coplot to Octave

TODO: Linear model

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Chapter 8: API Reference 101

8.2.58.49 tblish.dataset.OrchardSprays

[Static Method]out = OrchardSprays ()
Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard
sprays in repelling honeybees, using a Latin square design.

Format

rowpos Row of the design.

colpos Column of the design

treatment

Treatment level.

decrease Response.

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emul-
sion in sucrose solution. Seven different concentrations of lime sulphur ranging from
a concentration of 1/100 to 1/1,562,500 in successive factors of 1/5 were used as well
as a solution containing no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the
chamber for two hours, and then measuring the decrease in volume of the solutions
in the various cells.

An 8 x 8 Latin square design was used and the treatments were coded as follows:

A – highest level of lime sulphur B – next highest level of lime sulphur . . . G – lowest
level of lime sulphur H – no lime sulphur

Source

Finney, D. J. (1947). Probit Analysis. Cambridge.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.OrchardSprays;

tblish.examples.plot_pairs (t);

8.2.58.50 tblish.dataset.PlantGrowth

[Static Method]out = PlantGrowth ()
Results from an Experiment on Plant Growth

Chapter 8: API Reference 102

Description

Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control and two different treatment conditions.

Format

group Treatment condition group.

weight Weight of plants.

Source

Dobson, A. J. (1983). An Introduction to Statistical Modelling. London: Chapman
and Hall.

Examples

t = tblish.dataset.PlantGrowth;

TODO: Port anova to Octave

8.2.58.51 tblish.dataset.precip

[Static Method]out = precip ()
Annual Precipitation in US Cities

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States
(and Puerto Rico) cities.

Format

city City observed.

precip Annual precipitation (in).

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.precip;

TODO: Port dot plot to Octave

8.2.58.52 tblish.dataset.presidents

[Static Method]out = presidents ()
Quarterly Approval Ratings of US Presidents

Chapter 8: API Reference 103

Description

The (approximately) quarterly approval rating for the President of the United States
from the first quarter of 1945 to the last quarter of 1974.

Format

date Approximate date of the observation.

approval Approval rating (%).

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for
details.

Source

The Gallup Organisation.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.presidents;

figure

plot (datenum (t.date), t.approval)

datetick ("x")

xlabel ("Date")

ylabel ("Approval rating (%)")

title ("presidents data")

8.2.58.53 tblish.dataset.pressure

[Static Method]out = pressure ()
Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of
mercury in millimeters (of mercury).

Format

temperature

Temperature (deg C).

pressure Pressure (mm Hg).

Source

Weast, R. C., ed. (1973). Handbook of Chemistry and Physics. Cleveland: CRC
Press.

Chapter 8: API Reference 104

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.pressure;

figure

plot (t.temperature, t.pressure)

xlabel ("Temperature (deg C)")

ylabel ("Pressure (mm of Hg)")

title ("pressure data: Vapor Pressure of Mercury")

figure

semilogy (t.temperature, t.pressure)

xlabel ("Temperature (deg C)")

ylabel ("Pressure (mm of Hg)")

title ("pressure data: Vapor Pressure of Mercury")

8.2.58.54 tblish.dataset.Puromycin

[Static Method]out = Puromycin ()
Reaction Velocity of an Enzymatic Reaction

Description

Reaction velocity versus substrate concentration in an enzymatic reaction involving
untreated cells or cells treated with Puromycin.

Format

state Whether the cell was treated.

conc Substrate concentrations (ppm).

rate Instantaneous reaction rates (counts/min/min).

Details

Data on the velocity of an enzymatic reaction were obtained by Treloar (1974). The
number of counts per minute of radioactive product from the reaction was measured
as a function of substrate concentration in parts per million (ppm) and from these
counts the initial rate (or velocity) of the reaction was calculated (counts/min/min).
The experiment was conducted once with the enzyme treated with Puromycin, and
once with the enzyme untreated.

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data
Library at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Chapter 8: API Reference 105

References

Bates, D.M. and Watts, D.G. (1988). Nonlinear Regression Analysis and Its Appli-
cations. New York: Wiley. Appendix A1.3.

Treloar, M. A. (1974). Effects of Puromycin on Galactosyltransferase in Golgi Mem-
branes. M.Sc. Thesis, U. of Toronto.

Examples

t = tblish.dataset.Puromycin;

TODO: Port example to Octave

8.2.58.55 tblish.dataset.quakes

[Static Method]out = quakes ()
Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events
occurred in a cube near Fiji since 1964.

Format

lat Latitude of event.

long Longitude of event.

depth Depth (km).

mag Richter magnitude.

stations Number of stations reporting.

Details

There are two clear planes of seismic activity. One is a major plate junction; the
other is the Tonga trench off New Zealand. These data constitute a subsample from
a larger dataset of containing 5000 observations.

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from
Dr. John Woodhouse, Dept. of Geophysics, Harvard University.

References

G. E. P. Box and G. M. Jenkins (1976). Time Series Analysis, Forecasting and
Control. San Francisco: Holden-Day. p. 537.

P. J. Brockwell and R. A. Davis (1991). Time Series: Theory and Methods. Second
edition. New York: Springer-Verlag. p. 414.

Chapter 8: API Reference 106

Examples

TODO: Come up with example code here

8.2.58.56 tblish.dataset.randu

[Static Method]out = randu ()
Random Numbers from Congruential Generator RANDU

Description

400 triples of successive random numbers were taken from the VAX FORTRAN func-
tion RANDU running under VMS 1.5.

Format

record Index of the record.

x X value of the triple.

y Y value of the triple.

z Z value of the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in
3-space. This can be shown theoretically to be true for all triples from the RANDU
generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1],
U[5i+2], U[5i+3]), i= 0, ..., 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

Source

David Donoho

Examples

t = tblish.dataset.randu;

8.2.58.57 tblish.dataset.rivers

[Static Method]out = rivers ()
Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141 “major” rivers in North America, as
compiled by the US Geological Survey.

Chapter 8: API Reference 107

Format

rivers A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

tblish.dataset.rivers;

longest_river = max (rivers)

shortest_river = min (rivers)

8.2.58.58 tblish.dataset.rock

[Static Method]out = rock ()
Measurements on Petroleum Rock Samples

Description

Measurements on 48 rock samples from a petroleum reservoir.

Format

area Area of pores space, in pixels out of 256 by 256.

peri Perimeter in pixels.

shape Perimeter/sqrt(area).

perm Permeability in milli-Darcies.

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each
core sample was measured for permeability, and each cross-section has total area of
pores, total perimeter of pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

Examples

t = tblish.dataset.rock;

figure

scatter (t.area, t.perm)

xlabel ("Area of pores space (pixels out of 256x256)")

ylabel ("Permeability (milli-Darcies)")

Chapter 8: API Reference 108

8.2.58.59 tblish.dataset.sleep

[Static Method]out = sleep ()
Student’s Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep compared
to control) on 10 patients.

Format

id Patient ID.

group Drug given.

extra Increase in hours of sleep.

Details

The group variable name may be misleading about the data: They represent mea-
surements on 10 persons, not in groups.

Source

Cushny, A. R. and Peebles, A. R. (1905). The action of optical isomers: II hyoscines.
The Journal of Physiology, 32, 501–510.

Student (1908). The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959). The Analysis of Variance. New York, NY: Wiley.

Examples

t = tblish.dataset.sleep;

TODO: Port to Octave

8.2.58.60 tblish.dataset.stackloss

[Static Method]out = stackloss ()
Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Format

AirFlow Flow of cooling air.

WaterTemp

Cooling Water Inlet temperature.

Chapter 8: API Reference 109

AcidConc Concentration of acid (per 1000, minus 500).

StackLoss

Stack loss

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3)
to nitric acid (HNO3). The nitric oxides produced are absorbed in a countercurrent
absorption tower”. (Brownlee, cited by Dodge, slightly reformatted by MM.)

AirFlow represents the rate of operation of the plant. WaterTemp is the temperature
of cooling water circulated through coils in the absorption tower. AcidConc is the con-
centration of the acid circulating, minus 50, times 10: that is, 89 corresponds to 58.9
per cent acid. StackLoss (the dependent variable) is 10 times the percentage of the
ingoing ammonia to the plant that escapes from the absorption column unabsorbed;
that is, an (inverse) measure of the over-all efficiency of the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965). Statistical Theory and Methodology in Science
and Engineering. New York: Wiley. pp. 491–500.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Dodge, Y. (1996). The guinea pig of multiple regression. In: Robust Statistics, Data
Analysis, and Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday,
1996, Lecture Notes in Statistics 109, Springer-Verlag, New York.

Examples

t = tblish.dataset.stackloss;

TODO: Create linear model and print summary

8.2.58.61 tblish.dataset.state

[Static Method]out = state ()
US State Facts and Figures

Description

Data related to the 50 states of the United States of America.

Format

abb State abbreviation.

name State name.

area Area (sq mi).

Chapter 8: API Reference 110

lat Approximate center (latitude).

lon Approximate center (longitude).

division State division.

revion State region.

Population

Population estimate as of July 1, 1975.

Income Per capita income (1974).

Illiteracy

Illiteracy as of 1970 (percent of population).

LifeExp Lfe expectancy in years (1969-71).

Murder Murder and non-negligent manslaughter rate per 100,000 population
(1976).

HSGrad Percent high-school graduates (1970).

Frost Mean number of days with minimum temperature below freezing (1931-
1960) in capital or large city.

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of
the United States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data
Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Examples

t = tblish.dataset.state;

8.2.58.62 tblish.dataset.sunspot month

[Static Method]out = sunspot_month ()
Monthly Sunspot Data, from 1749 to “Present”

Description

Monthly numbers of sunspots, as from the World Data Center, aka SIDC. This is
the version of the data that may occasionally be updated when new counts become
available.

Format

month Month of the observation.

sunspots Number of sunspots.

Chapter 8: API Reference 111

Source

WDC-SILSO, Solar Influences Data Analysis Center (SIDC), Royal Observatory of
Belgium, Av. Circulaire, 3, B-1180 BRUSSELS. Currently at http://www.sidc.be/
silso/datafiles.

Examples

t = tblish.dataset.sunspot_month;

8.2.58.63 tblish.dataset.sunspot year

[Static Method]out = sunspot_year ()
Yearly Sunspot Data, 1700-1988

Description

Yearly numbers of sunspots from 1700 to 1988 (rounded to one digit).

Format

year Year of the observation.

sunspots Number of sunspots.

Source

H. Tong (1996) Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

Examples

t = tblish.dataset.sunspot_year;

figure

plot (t.year, t.sunspots)

xlabel ("Year")

ylabel ("Sunspots")

8.2.58.64 tblish.dataset.sunspots

[Static Method]out = sunspots ()
Monthly Sunspot Numbers, 1749-1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal
Observatory, Zurich until 1960, then Tokyo Astronomical Observatory.

Format

month Month of the observation.

sunspots Number of observed sunspots.

http://www.sidc.be/silso/datafiles
http://www.sidc.be/silso/datafiles

Chapter 8: API Reference 112

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from
Many Fields for the Student and Research Worker. New York: Springer-Verlag.

Examples

t = tblish.dataset.sunspots;

figure

plot (datenum (t.month), t.sunspots)

datetick ("x")

xlabel ("Date")

ylabel ("Monthly sunspot numbers")

title ("sunspots data")

8.2.58.65 tblish.dataset.swiss

[Static Method]out = swiss ()
Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-
speaking provinces of Switzerland at about 1888.

Format

Fertility

Ig, ‘common standardized fertility measure’.

Agriculture

% of males involved in agriculture as occupation.

Examination

% draftees receiving highest mark on army examination.

Education

% education beyond primary school for draftees.

Catholic % ‘Catholic’ (as opposed to ‘Protestant’).

InfantMortality

Live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Source

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the demographic transition;
i.e., its fertility was beginning to fall from the high level typical of underdeveloped
countries.

Chapter 8: API Reference 113

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but Catholic were
scaled to [0, 1].

Note

Files for all 182 districts in 1888 and other years have been available at https://

opr.princeton.edu/archive/pefp/switz.aspx.

They state that variables Examination and Education are averages for 1887, 1888
and 1889.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language.
Monterey: Wadsworth & Brooks/Cole.

Examples

t = tblish.dataset.swiss;

TODO: Port linear model to Octave

8.2.58.66 tblish.dataset.Theoph

[Static Method]out = Theoph ()
Pharmacokinetics of Theophylline

Description

An experiment on the pharmacokinetics of theophylline.

Format

Subject Categorical identifying the subject on whom the observation was made.
The ordering is by increasing maximum concentration of theophylline
observed.

Wt Weight of the subject (kg).

Dose Dose of theophylline administerred orally to the subject (mg/kg).

Time Time since drug administration when the sample was drawn (hr).

conc Theophylline concentration in the sample (mg/L).

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton
of the kinetics of the anti-asthmatic drug theophylline. Twelve subjects were given
oral doses of theophylline then serum concentrations were measured at 11 time points
over the next 25 hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and
Bates (2000) using a two-compartment open pharmacokinetic model, for which a
self-starting model function, SSfol, is available.

https://opr.princeton.edu/archive/pefp/switz.aspx
https://opr.princeton.edu/archive/pefp/switz.aspx

Chapter 8: API Reference 114

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data
Library at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

References

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994). NONMEM Users Guide:
Part V. NONMEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measure-
ment Data. London: Chapman & Hall. (section 5.5, p. 145 and section 6.6, p.
176)

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer. (Appendix A.29)

Examples

t = tblish.dataset.Theoph;

TODO: Coplot

TODO: Yet another linear model to port to Octave

8.2.58.67 tblish.dataset.Titanic

[Static Method]out = Titanic ()
Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden
voyage of the ocean liner ‘Titanic’, summarized according to economic status (class),
sex, age and survival.

Format

n is a 4-dimensional array resulting from cross-tabulating 2201 observations on 4
variables. The dimensions of the array correspond to the following variables:

Class 1st, 2nd, 3rd, Cre.

Sex Male, Female.

Age Child, Adult.

Survived No, Yes.

Details

The sinking of the Titanic is a famous event, and new books are still being published
about it. Many well-known facts—from the proportions of first-class passengers to
the ‘women and children first’ policy, and the fact that that policy was not entirely
successful in saving the women and children in the third class—are reflected in the
survival rates for various classes of passenger.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Chapter 8: API Reference 115

These data were originally collected by the British Board of Trade in their investiga-
tion of the sinking. Note that there is not complete agreement among primary sources
as to the exact numbers on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise
in public interest in the Titanic. Very detailed data about the passengers is now
available on the Internet, at sites such as Encyclopedia Titanica (https://www.
encyclopedia-titanica.org/).

Source

Dawson, Robert J. MacG. (1995). The ‘Unusual Episode’ Data Revisited. Journal of
Statistics Education, 3.

The source provides a data set recording class, sex, age, and survival status for each
person on board of the Titanic, and is based on data originally collected by the British
Board of Trade and reprinted in:

British Board of Trade (1990). Report on the Loss of the ‘Titanic’ (S.S.). British
Board of Trade Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

Examples

tblish.dataset.Titanic;

TODO: Port mosaic plot to Octave

TODO: Check for higher survival rates in children and females

8.2.58.68 tblish.dataset.ToothGrowth

[Static Method]out = ToothGrowth ()
The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (cells responsible for tooth growth) in 60
guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and
2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of
vitamin C and coded as VC).

Format

supp Supplement type.

dose Dose (mg/day).

len Tooth length.

Source

C. I. Bliss (1952). The Statistics of Bioassay. Academic Press.

https://www.encyclopedia-titanica.org/
https://www.encyclopedia-titanica.org/

Chapter 8: API Reference 116

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Crampton, E. W. (1947). The growth of the odontoblast of the incisor teeth as a
criterion of vitamin C intake of the guinea pig. The Journal of Nutrition, 33(5),
491–504.

Examples

t = tblish.dataset.ToothGrowth;

tblish.examples.coplot (t, "dose", "len", "supp");

TODO: Port Lowess smoothing to Octave

8.2.58.69 tblish.dataset.treering

[Static Method]out = treering ()
Yearly Treering Data, -6000-1979

Description

Contains normalized tree-ring widths in dimensionless units.

Format

A univariate time series with 7981 observations.

Each tree ring corresponds to one year.

Details

The data were recorded by Donald A. Graybill, 1980, from Gt Basin Bristlecone Pine
2805M, 3726-11810 in Methuselah Walk, California.

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/

~hyndman/TSDL/, series ‘CA535.DAT’.

References

For some photos of Methuselah Walk see https://web.archive.org/web/

20110523225828/http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.

html.

Examples

t = tblish.dataset.treering;

8.2.58.70 tblish.dataset.trees

[Static Method]out = trees ()
Diameter, Height and Volume for Black Cherry Trees

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
https://web.archive.org/web/20110523225828/http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html
https://web.archive.org/web/20110523225828/http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html
https://web.archive.org/web/20110523225828/http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html

Chapter 8: API Reference 117

Description

This data set provides measurements of the diameter, height and volume of timber in
31 felled black cherry trees. Note that the diameter (in inches) is erroneously labelled
Girth in the data. It is measured at 4 ft 6 in above the ground.

Format

Girth Tree diameter (rather than girth, actually) in inches.

Height Height in ft.

Volume Volume of timber in cubic feet.

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976). The Minitab Student Handbook.
Duxbury Press.

References

Atkinson, A. C. (1985). Plots, Transformations and Regression. Oxford: Oxford
University Press.

Examples

t = tblish.dataset.trees;

figure

tblish.examples.plot_pairs (t);

figure

loglog (t.Girth, t.Volume)

xlabel ("Girth")

ylabel ("Volume")

TODO: Transform to log space for the coplot

TODO: Linear model

8.2.58.71 tblish.dataset.UCBAdmissions

[Static Method]out = UCBAdmissions ()
Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest de-
partments in 1973 classified by admission and sex.

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 vari-
ables. The variables and their levels are as follows:

Chapter 8: API Reference 118

Admit Admitted, Rejected.

Gender Male, Female.

Dept A, B, C, D, E, F.

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al
(1975). At issue is whether the data show evidence of sex bias in admission practices.
There were 2691 male applicants, of whom 1198 (44.5%) were admitted, compared
with 1835 female applicants of whom 557 (30.4%) were admitted. This gives a sample
odds ratio of 1.83, indicating that males were almost twice as likely to be admitted.
In fact, graphical methods (as in the example below) or log-linear modelling show
that the apparent association between admission and sex stems from differences in
the tendency of males and females to apply to the individual departments (females
used to apply more to departments with higher rejection rates).

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data
Library at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975). Sex bias in graduate
admissions: Data from Berkeley. Science, 187, 398–403. http://www.jstor.org/

stable/1739581.

Examples

tblish.dataset.UCBAdmissions;

TODO: Port mosaic plot to Octave

8.2.58.72 tblish.dataset.UKDriverDeaths

[Static Method]out = UKDriverDeaths ()
Road Casualties in Great Britain 1969-84

Description

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great
Britain killed or seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat
belts was introduced on 31 Jan 1983.

Seatbelts is more information on the same problem.

Format

UKDriverDeaths is a table with the following variables:

month Month of the observation.

deaths Number of deaths.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www.jstor.org/stable/1739581
http://www.jstor.org/stable/1739581

Chapter 8: API Reference 119

Seatbelts is a table with the following variables:

month Month of the observation.

DriversKilled

Car drivers killed.

drivers Same as UKDriverDeaths deaths count.

front Front-seat passengers killed or seriously injured.

rear Rear-seat passengers killed or seriously injured.

kms Distance driven.

PetrolPrice

Petrol price.

VanKilled

Number of van (“light goods vehicle”) drivers killed.

law 0/1: was the seatbelt law in effect that month?

Source

Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge: Cambridge University Press. pp. 519–523.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods.
Oxford: Oxford University Press. http://www.ssfpack.com/dkbook/

References

Harvey, A. C. and Durbin, J. (1986). The effects of seat belt legislation on British
road casualties: A case study in structural time series modelling. Journal of the Royal
Statistical Society series A, 149, 187–227.

Examples

tblish.dataset.UKDriverDeaths;

d = UKDriverDeaths;

s = Seatbelts;

TODO: Port the model and plots to Octave

8.2.58.73 tblish.dataset.UKgas

[Static Method]out = UKgas ()
UK Quarterly Gas Consumption

Description

Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of therms.

Format

date Quarter of the observation

gas Gas consumption (MM therms).

http://www.ssfpack.com/dkbook/

Chapter 8: API Reference 120

Source

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods.
Oxford: Oxford University Press. http://www.ssfpack.com/dkbook/.

Examples

t = tblish.dataset.UKgas;

plot (datenum (t.date), t.gas);

datetick ("x")

xlabel ("Month")

ylabel ("Gas consumption (MM therms)")

8.2.58.74 tblish.dataset.UKLungDeaths

[Static Method]out = UKLungDeaths ()
Monthly Deaths from Lung Diseases in the UK

Description

Three time series giving the monthly deaths from bronchitis, emphysema and asthma
in the UK, 1974–1979.

Format

date Month of the observation.

ldeaths Total lung deaths.

fdeaths Lung deaths among females.

mdeaths Lung deaths among males.

Source

P. J. Diggle (1990). Time Series: A Biostatistical Introduction. Oxford. table A.3

Examples

t = tblish.dataset.UKLungDeaths;

figure

plot (datenum (t.date), t.ldeaths);

title ("Total UK Lung Deaths")

xlabel ("Month")

ylabel ("Deaths")

figure

plot (datenum (t.date), [t.fdeaths t.mdeaths]);

title ("UK Lung Deaths buy sex")

legend ({"Female", "Male"})

xlabel ("Month")

http://www.ssfpack.com/dkbook/

Chapter 8: API Reference 121

ylabel ("Deaths")

8.2.58.75 tblish.dataset.USAccDeaths

[Static Method]out = USAccDeaths ()
Accidental Deaths in the US 1973-1978

Description

A time series giving the monthly totals of accidental deaths in the USA.

Format

month Month of the observation.

deaths Accidental deaths.

Source

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. New
York: Springer.

Examples

t = tblish.dataset.USAccDeaths;

8.2.58.76 tblish.dataset.USArrests

[Static Method]out = USArrests ()
Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder,
and rape in each of the 50 US states in 1973. Also given is the percent of the
population living in urban areas.

Format

State State name.

Murder Murder arrests (per 100,000).

Assault Assault arrests (per 100,000).

UrbanPop Percent urban population.

Rape Rape arrests (per 100,000).

Note

USArrests contains the data as in McNeil’s monograph. For the UrbanPop per-
centages, a review of the table (No. 21) in the Statistical Abstracts 1975 reveals a

Chapter 8: API Reference 122

transcription error for Maryland (and that McNeil used the same “round to even”
rule), as found by Daniel S Coven (Arizona).

See the example below on how to correct the error and improve accuracy for the
‘<n>.5’ percentages.

Source

World Almanac and Book of Facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975, p.20, (Urban rates), possibly available
as https://books.google.ch/books?id=zl9qAAAAMAAJ&pg=PA20.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.USArrests;

summary (t);

tblish.examples.plot_pairs (t(:,2:end));

TODO: Difference between USArrests and its correction

TODO: +/- 0.5 to restore the original <n>.5 percentages

8.2.58.77 tblish.dataset.USJudgeRatings

[Static Method]out = USJudgeRatings ()
Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court.

Format

CONT Number of contacts of lawyer with judge.

INTG Judicial integrity.

DMNR Demeanor.

DILG Diligence.

CFMG Case flow managing.

DECI Prompt decisions.

PREP Preparation for trial.

FAMI Familiarity with law.

ORAL Sound oral rulings.

https://books.google.ch/books?id=zl9qAAAAMAAJ&pg=PA20

Chapter 8: API Reference 123

WRIT Sound written rulings.

PHYS Physical ability.

RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

t = tblish.dataset.USJudgeRatings;

figure

tblish.examples.plot_pairs (t(:,2:end));

title ("USJudgeRatings data")

8.2.58.78 tblish.dataset.USPersonalExpenditure

[Static Method]out = USPersonalExpenditure ()
Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in
the categories: food and tobacco, household operation, medical and health, personal
care, and private education for the years 1940, 1945, 1950, 1955 and 1960.

Format

A 2-dimensional matrix x with Category along dimension 1 and Year along dimension
2.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, Mass: Addison-Wesley.

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

tblish.dataset.USPersonalExpenditure;

TODO: Port medpolish() from R, whatever that is.

8.2.58.79 tblish.dataset.uspop

[Static Method]out = uspop ()
Populations Recorded by the US Census

Chapter 8: API Reference 124

Description

This data set gives the population of the United States (in millions) as recorded by
the decennial census for the period 1790–1970.

Format

year Year of the census.

population

Population, in millions.

Source

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.uspop;

figure

semilogy (t.year, t.population)

xlabel ("Year")

ylabel ("U.S. Population (millions)")

8.2.58.80 tblish.dataset.VADeaths

[Static Method]out = VADeaths ()
Death Rates in Virginia (1940)

Description

Death rates per 1000 in Virginia in 1940.

Format

A 2-dimensional matrix deaths, with age group along dimension 1 and demographic
group along dimension 2.

Details

The death rates are measured per 1000 population per year. They are cross-classified
by age group (rows) and population group (columns). The age groups are: 50–54, 55–
59, 60–64, 65–69, 70–74 and the population groups are Rural/Male, Rural/Female,
Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

Source

Molyneaux, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death
rates by color, sex, age, and rural or urban residence. American Sociological Review,
12, 525–535.

Chapter 8: API Reference 125

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

tblish.dataset.VADeaths;

TODO: Port to Octave

8.2.58.81 tblish.dataset.volcano

[Static Method]out = volcano ()
Topographic Information on Auckland’s Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field.
This data set gives topographic information for Maunga Whau on a 10m by 10m grid.

Format

A matrix volcano with 87 rows and 61 columns, rows corresponding to grid lines
running east to west and columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded
as accurate.

References

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting and
Control. San Francisco: Holden-Day. p. 537.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Second
edition. New York: Springer-Verlag. p. 414.

Examples

tblish.dataset.volcano;

TODO: Figure out how to do a topo map in Octave. Just a gridded color plot

should be fine. And then maybe do a 3-d mesh plot.

8.2.58.82 tblish.dataset.warpbreaks

[Static Method]out = warpbreaks ()
The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds
to a fixed length of yarn.

Chapter 8: API Reference 126

Format

wool Type of wool (A or B).

tension The level of tension (L, M, H).

breaks Number of breaks.

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH,
BL, BM, BH).

Source

Tippett, L. H. C. (1950). Technological Applications of Statistics. New York: Wiley.
Page 106.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, Mass: Addison-Wesley.

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.warpbreaks;

summary (t)

TODO: Port the plotting code and OPAR to Octave

8.2.58.83 tblish.dataset.women

[Static Method]out = women ()
Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Format

height Height (in).

weight Weight (lbs).

Details

The data set appears to have been taken from the American Society of Actuaries
Build and Blood Pressure Study for some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing
and shoes, and heights with shoes”.

Source

The World Almanac and Book of Facts, 1975.

Chapter 8: API Reference 127

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

t = tblish.dataset.women;

figure

scatter (t.height, t.weight)

xlabel ("Height (in)")

ylabel ("Weight (lb")

title ("women data: American women aged 30-39")

8.2.58.84 tblish.dataset.WorldPhones

[Static Method]out = WorldPhones ()
The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for
a given region, and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa,
Central America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Examples

tblish.dataset.WorldPhones;

TODO: Port matplot() to Octave

8.2.58.85 tblish.dataset.WWWusage

[Static Method]out = WWWusage ()
WWWusage

Chapter 8: API Reference 128

Description

A time series of the numbers of users connected to the Internet through a server every
minute.

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods.
Oxford: Oxford University Press. http://www.ssfpack.com/dkbook/

References

Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998). Forecasting: Methods
and Applications. New York: Wiley.

Examples

TODO: Come up with example code here

8.2.58.86 tblish.dataset.zCO2

[Static Method]out = zCO2 ()
Carbon Dioxide Uptake in Grass Plants

Description

The CO2 data set has 84 rows and 5 columns of data from an experiment on the cold
tolerance of the grass species Echinochloa crus-galli.

Format

Details

The CO2 uptake of six plants from Quebec and six plants from Mississippi was mea-
sured at several levels of ambient CO2 concentration. Half the plants of each type
were chilled overnight before the experiment was conducted.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990). The statistical analysis of eco-
physiological response curves obtained from experiments involving repeated measures.
Ecology, 71, 1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New
York: Springer.

Examples

t = tblish.dataset.zCO2;

TODO: Coplot

http://www.ssfpack.com/dkbook/

Chapter 8: API Reference 129

TODO: Port the linear model to Octave

8.2.59 tblish.datasets

[Class]tblish.datasets
Example dataset collection.

tblish.datasets is a collection of example datasets to go with the Tablicious pack-
age.

The tblish.datasets class provides methods for listing and loading the example
datasets.

8.2.59.1 datasets.description

[Static Method]description (datasetName)
[Static Method]out = description (datasetName)

Get or display the description for a dataset.

Gets the description for the named dataset. If the output is captured, it is returned
as a charvec containing plain text suitable for human display. If the output is not
captured, displays the description to the console.

8.2.59.2 datasets.list

[Static Method]list ()
[Static Method]out = list ()

List all datasets.

Lists all the example datasets known to this class. If the output is captured, returns
the list as a table. If the output is not captured, displays the list.

Returns a table with variables Name, Description, and possibly more.

8.2.59.3 datasets.load

[Static Method]load (datasetName)
[Static Method]out = load (datasetName)

Load a specified dataset.

datasetName is the name of the dataset to load, as found in the Name column of the
dataset list.

8.2.60 tblish.evalWithTableVars

[Function]out = tblish.evalWithTableVars (tbl, expr)
Evaluate an expression against a table array’s variables.

Evaluates the M-code expression expr in a workspace where all of tbl’s variables have
been assigned to workspace variables.

expr is a charvec containing an Octave expression.

As an implementation detail, the workspace will also contain some variables that are
prefixed and suffixed with " ". So try to avoid those in your table variable names.

Chapter 8: API Reference 130

Returns the result of the evaluation.

Examples:

[s,p,sp] = tblish.examples.SpDb

tmp = join (sp, p);

shipment_weight = tblish.evalWithTableVars (tmp, "Qty .* Weight")

See also: Section 8.2.55.30 [table.restrict], page 58,

8.2.61 tblish.examples.coplot

[Function][fig, hax] = tblish.examples.coplot (tbl, xvar, yvar, gvar)
[Function][fig, hax] = tblish.examples.coplot (fig, tbl, xvar, yvar,

gvar)
[Function][fig, hax] = tblish.examples.coplot (..., OptionName,

OptionValue, ...)
Conditioning plot.

tblish.examples.coplot produces conditioning plots. This is a kind of plot that
breaks up the data into groups based on one or two grouping variables, and plots each
group of data in a separate subplot.

tbl is a table containing the data to plot.

xvar is the name of the table variable within tbl to use as the X values. May be a
variable name or index.

yvar is the name of the table variable within tbl to use as the Y values. May be a
variable name or index.

gvar is the name of the table variable or variables within tbl to use as the grouping
variable(s). The grouping variables split the data into groups based on the distinct
values in those variables. gvar may specify either one or two grouping variables (but
not more). It can be provided as a charvec, cellstr, or index array. Records with a
missing value for their grouping variable(s) are ignored.

fig is the figure handle to plot into. If fig is not provided, a new figure is created.

Name/Value options:

PlotFcn The plotting function to use, supplied as a function handle. Defaults to
@plot. It must be a function that provides the signature fcn(hax, X,

Y, ...).

PlotArgs A cell array of arguments to pass in to the plotting function, following
the hax, x, and y arguments.

Returns: fig – the figure handle it plotted into hax – array of axes handles to all the
axes for the subplots

8.2.62 tblish.examples.plot pairs

[Function]out = tblish.examples.plot_pairs (data)
[Function]out = tblish.examples.plot_pairs (data, plot_type)
[Function]out = tblish.examples.plot_pairs (fig, ...)

Plot pairs of variables against each other.

Chapter 8: API Reference 131

data is the data holding the variables to plot. It may be either a table or a struct.
Each variable or field in the table or struct is considered to be one variable. Each
must hold a vector, and all the vectors of all the variables must be the same size.

plot type is a charvec indicating what plot type to do in each subplot. ("scatter"
is the default.) Valid plot type values are:

"scatter"

A plain scatter plot.

"smooth" A scatter plot + fitted line, like R’s panel.smooth does.

fig is an optional figure handle to plot into. If omitted, a new figure is created.

Returns the created figure, if the output is captured.

8.2.63 tblish.examples.SpDb

[Function]spdb = tblish.examples.SpDb ()
[Function][s, p, sp] = tblish.examples.SpDb ()

The classic Suppliers-Parts example database.

Constructs the classic C. J. Date Suppliers-Parts ("SP") example database as tables.
This database is the one used as an example throughout Date’s "An Introduction to
Database Systems" textbook.

Returns the database as a set of three table arrays. If one argout is captured, the
tables are returned in the fields of a single struct. If multiple argouts are captured,
the tables are returned as three argouts with a single table in each, in the order (s,
p, sp).

8.2.64 tblish.sizeof2

[Function]out = tblish.sizeof2 (x)
Approximate size of an array in bytes, with object support.

This is an alternative to Octave’s sizeof function that tries to provide meaningful
support for objects, including the classes defined in Tablicious. It is named "sizeof2"
instead of "sizeof" to avoid a "shadowing core function" warning when loading Tab-
licious, because it seems that Octave does not consider packages (namespaces) when
detecting shadowed functions.

This may be supplemented or replaced by sizeof override methods on Tablicious’s
classes. I’m not sure whether Octave’s sizeof supports extension by method over-
rides, so I’m not doing that yet. If that happens, this sizeof2 function will stick
around in a deprecated state for a while, and it will respect those override methods.

For tables, this returns the sum of sizeof for all of its variables’ arrays, plus the size
of the VariableNames and any other metadata stored in obj.

This is currently broken for some types, because its implementation is in transition
from overridden methods on Tablicious’s objects to a separate function.

This is not supported, fully or at all, for all input types, but it has support for the
types defined in Tablicious, plus some Octave built-in types, and makes a best effort
at figuring out user-defined classdef objects. It currently does not have extensibility

Chapter 8: API Reference 132

support for customization by classdef classes, but that may be added in the future, in
which case its output may change significantly for classdef objects in future releases.

x is an array of any type.

Returns a scalar numeric. Returns NaN for types that are known to not be supported,
instead of raising an error. Raises an error if it fails to determine the size of an input
of a type that it thought was supported.

See also: sizeof

8.2.65 tblish.table.grpstats

[Function][out] = tblish.table.grpstats (tbl, groupvar)
[Function][out] = tblish.table.grpstats (..., 'DataVars', DataVars)

Statistics by group for a table array.

This is a table-specific implementation of grpstats that works on table arrays. It
is supplied as a function in the +tblish package to avoid colliding with the global
grpstats function supplied by the Statistics Octave Forge package. Depending on
which version of the Statistics OF package you are using, it may or may not sup-
port table inputs to its grpstats function. This function is supplied as an alter-
native you can use in an environment where table arrays are not supported by
the grpstats that you have, though you need to make code changes and call it as
tblish.table.grpstats(tbl) instead of with a plain grpstats(tbl).

See also: table.groupby, table.findgroups, table.splitapply

8.2.66 timezones

[Function]out = timezones ()
[Function]out = timezones (area)

List all the time zones defined on this system.

This lists all the time zones that are defined in the IANA time zone database used by
this Octave. (On Linux and macOS, that will generally be the system time zone data-
base from /usr/share/zoneinfo. On Windows, it will be the database redistributed
with the Tablicious package.

If the return is captured, the output is returned as a table if your Octave has table
support, or a struct if it does not. It will have fields/variables containing column
vectors:

Name The IANA zone name, as cellstr.

Area The geographical area the zone is in, as cellstr.

Compatibility note: Matlab also includes UTCOffset and DSTOffset fields in the
output; these are currently unimplemented.

8.2.67 todatetime

[Function]out = todatetime (x)
Convert input to a Tablicious datetime array, with convenient interface.

Chapter 8: API Reference 133

This is an alternative to the regular datetime constructor, with a signature and con-
version logic that Tablicious’s author likes better.

This mainly exists because datetime’s constructor signature does not accept
datenums, and instead treats one-arg numeric inputs as datevecs. (For compatibility
with Matlab’s interface.) I think that’s less convenient: datenums seem to be more
common than datevecs in M-code, and it returns an object array that’s not the same
size as the input.

Returns a datetime array whose size depends on the size and type of the input array,
but will generally be the same size as the array of strings or numerics the input array
"represents".

8.2.68 vartype

[Function]out = vartype (type)
Filter by variable type for use in suscripting.

Creates an object that can be used for subscripting into the variables dimension of a
table and filtering on variable type.

type is the name of a type as charvec. This may be anything that the isa function
accepts, or 'cellstr' to select cellstrs, as determined by iscellstr.

Returns an object of an opaque type. Don’t worry about what type it is; just pass it
into the second argument of a subscript into a table object.

8.2.69 vecfun

[Function]out = vecfun (fcn, x, dim)
Apply function to vectors in array along arbitrary dimension.

This function is not implemented yet.

Applies a given function to the vector slices of an N-dimensional array, where those
slices are along a given dimension.

fcn is a function handle to apply.

x is an array of arbitrary type which is to be sliced and passed in to fcn.

dim is the dimension along which the vector slices lay.

Returns the collected output of the fcn calls, which will be the same size as x, but
not necessarily the same type.

8.2.70 years

[Function File]out = years (x)
Create a duration x years long, or get the years in a duration x.

If input is numeric, returns a duration array in units of fixed-length years of 365.2425
days each.

If input is a duration, converts the duration to a number of fixed-length years as
double.

Note: years creates fixed-length years, which may not be what you want. To create
a duration of calendar years (which account for actual leap days), use calyears.

See Section 8.2.5 [calyears], page 18.

134

9 Copying

9.1 Package Copyright

Tablicious for GNU Octave is covered by the GNU GPLv3 and other Free and Open Source
Software licenses.

The main code of Tablicious is licensed under the GNU GPL version 3.

The date/time portion of Tablicious includes some Unicode data files licensed under the
Unicode License Agreement - Data Files and Software license.

The Tablicious test suite contains some files, specifically some table-related tests using
MP-Test like t/t_01_table.m, which are BSD 3-Clause licensed, and are adapted from
MATPOWER written by Ray Zimmerman.

The Fisher Iris dataset is Public Domain.

9.2 Manual Copyright

This manual is for Tablicious, version 0.4.5.

Copyright c© 2019, 2023, 2024 Andrew Janke

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modified versions.

	Table of Contents
	1 Introduction
	2 Getting Started
	3 Table Representation
	Table Construction
	Tables vs SQL

	4 Date and Time Representation
	datetime Class
	Datenum Compatibility

	Time Zones
	Defined Time Zones

	Durations
	duration Class
	calendarDuration Class

	5 Validation Functions
	6 Example Data Sets
	Data Sets from R

	7 Missing Functionality
	8 API Reference
	API by Category
	Tables
	Strings and Categoricals
	Dates and Times
	Missing Data
	Validation Functions
	Miscellaneous
	Example Datasets
	Example Code
	Uncategorized

	API Alphabetically
	array2table
	caldays
	calendarDuration
	calendarDuration.calendarDuration
	calendarDuration.dispstrs
	calendarDuration.ismissing
	calendarDuration.isnan
	calendarDuration.minus
	calendarDuration.mtimes
	calendarDuration.plus
	calendarDuration.times
	calendarDuration.uminus

	calmonths
	calyears
	categorical
	categorical.addcats
	categorical.categorical
	categorical.categories
	categorical.cellstr
	categorical.dispstrs
	categorical.double
	categorical.iscategory
	categorical.ismissing
	categorical.isnanny
	categorical.isordinal
	categorical.isundefined
	categorical.mergecats
	categorical.missing
	categorical.removecats
	categorical.renamecats
	categorical.reordercats
	categorical.setcats
	categorical.squeezecats
	categorical.string
	categorical.summary
	categorical.undefined

	cell2table
	colvecfun
	contains
	datetime
	datetime.colon
	datetime.convertDatenumTimeZone
	datetime.datenum
	datetime.datenum2posix
	datetime.datestr
	datetime.datestrs
	datetime.datestruct
	datetime.datetime
	datetime.datevec
	datetime.diff
	datetime.dispstrs
	datetime.eq
	datetime.ge
	datetime.gmtime
	datetime.gt
	datetime.hms
	datetime.isbetween
	datetime.isnan
	datetime.isnat
	datetime.le
	datetime.linspace
	datetime.localtime
	datetime.lt
	datetime.minus
	datetime.NaT
	datetime.ne
	datetime.ofDatenum
	datetime.ofDatestruct
	datetime.plus
	datetime.posix2datenum
	datetime.posixtime
	datetime.proxyKeys
	datetime.timeofday
	datetime.week
	datetime.ymd
	datetime.ymdhms

	days
	discretize
	dispstrs
	duration
	duration.char
	duration.dispstrs
	duration.hours
	duration.linspace
	duration.milliseconds
	duration.minutes
	duration.ofDays
	duration.seconds
	duration.years

	eqn
	head
	hours
	iscalendarduration
	iscategorical
	isdatetime
	isduration
	isfile
	isfolder
	isnanny
	istable
	istabular
	istimetable
	localdate
	localdate.datenum
	localdate.datestr
	localdate.datestrs
	localdate.datestruct
	localdate.dispstrs
	localdate.isnan
	localdate.isnat
	localdate.localdate
	localdate.NaT
	localdate.posixtime
	localdate.ymd

	milliseconds
	minutes
	missing
	missing.dispstrs
	missing.ismissing
	missing.isnan
	missing.isnanny
	missing.missing

	mustBeA
	mustBeCellstr
	mustBeCharvec
	mustBeFinite
	mustBeInteger
	mustBeMember
	mustBeNonempty
	mustBeNumeric
	mustBeReal
	mustBeSameSize
	mustBeScalar
	mustBeScalarLogical
	mustBeVector
	NaC
	NaS
	NaT
	pp
	scalarexpand
	seconds
	size2str
	splitapply
	string
	string.cell
	string.cellstr
	string.char
	string.cmp
	string.decode
	string.dispstrs
	string.empty
	string.encode
	string.endsWith
	string.erase
	string.ismissing
	string.isnanny
	string.isstring
	string.lower
	string.missing
	string.plus
	string.regexprep
	string.reverse
	string.reverse_bytes
	string.startsWith
	string.strcat
	string.strcmp
	string.strfind
	string.string
	string.strlength
	string.strlength_bytes
	string.strrep
	string.upper

	struct2table
	table
	table.addvars
	table.antijoin
	table.cartesian
	table.convertvars
	table.findgroups
	table.getvar
	table.getvars
	table.groupby
	table.height
	table.horzcat
	table.innerjoin
	table.intersect
	table.isempty
	table.ismember
	table.ismissing
	table.istable
	table.join
	table.mergevars
	table.movevars
	table.ndims
	table.numel
	table.outerfillvals
	table.outerjoin
	table.prettyprint
	table.realjoin
	table.removevars
	table.renamevars
	table.repelem
	table.repmat
	table.restrict
	table.rowfun
	table.rows2vars
	table.semijoin
	table.setdiff
	table.setDimensionNames
	table.setRowNames
	table.setvar
	table.setVariableNames
	table.setxor
	table.size
	table.splitapply
	table.splitvars
	table.squeeze
	table.stack
	table.summary
	table.table
	table.table2array
	table.table2cell
	table.table2struct
	table.union
	table.varfun
	table.varnames
	table.vertcat
	table.width

	tableOuterFillValue
	tail
	tblish.dataset
	tblish.dataset.airmiles
	tblish.dataset.AirPassengers
	tblish.dataset.airquality
	tblish.dataset.anscombe
	tblish.dataset.attenu
	tblish.dataset.attitude
	tblish.dataset.austres
	tblish.dataset.beavers
	tblish.dataset.BJsales
	tblish.dataset.BOD
	tblish.dataset.cars
	tblish.dataset.ChickWeight
	tblish.dataset.chickwts
	tblish.dataset.co2
	tblish.dataset.crimtab
	tblish.dataset.cupcake
	tblish.dataset.discoveries
	tblish.dataset.DNase
	tblish.dataset.esoph
	tblish.dataset.euro
	tblish.dataset.eurodist
	tblish.dataset.EuStockMarkets
	tblish.dataset.faithful
	tblish.dataset.Formaldehyde
	tblish.dataset.freeny
	tblish.dataset.HairEyeColor
	tblish.dataset.Harman23cor
	tblish.dataset.Harman74cor
	tblish.dataset.Indometh
	tblish.dataset.infert
	tblish.dataset.InsectSprays
	tblish.dataset.iris
	tblish.dataset.islands
	tblish.dataset.JohnsonJohnson
	tblish.dataset.LakeHuron
	tblish.dataset.lh
	tblish.dataset.LifeCycleSavings
	tblish.dataset.Loblolly
	tblish.dataset.longley
	tblish.dataset.lynx
	tblish.dataset.morley
	tblish.dataset.mtcars
	tblish.dataset.nhtemp
	tblish.dataset.Nile
	tblish.dataset.nottem
	tblish.dataset.npk
	tblish.dataset.occupationalStatus
	tblish.dataset.Orange
	tblish.dataset.OrchardSprays
	tblish.dataset.PlantGrowth
	tblish.dataset.precip
	tblish.dataset.presidents
	tblish.dataset.pressure
	tblish.dataset.Puromycin
	tblish.dataset.quakes
	tblish.dataset.randu
	tblish.dataset.rivers
	tblish.dataset.rock
	tblish.dataset.sleep
	tblish.dataset.stackloss
	tblish.dataset.state
	tblish.dataset.sunspot_month
	tblish.dataset.sunspot_year
	tblish.dataset.sunspots
	tblish.dataset.swiss
	tblish.dataset.Theoph
	tblish.dataset.Titanic
	tblish.dataset.ToothGrowth
	tblish.dataset.treering
	tblish.dataset.trees
	tblish.dataset.UCBAdmissions
	tblish.dataset.UKDriverDeaths
	tblish.dataset.UKgas
	tblish.dataset.UKLungDeaths
	tblish.dataset.USAccDeaths
	tblish.dataset.USArrests
	tblish.dataset.USJudgeRatings
	tblish.dataset.USPersonalExpenditure
	tblish.dataset.uspop
	tblish.dataset.VADeaths
	tblish.dataset.volcano
	tblish.dataset.warpbreaks
	tblish.dataset.women
	tblish.dataset.WorldPhones
	tblish.dataset.WWWusage
	tblish.dataset.zCO2

	tblish.datasets
	datasets.description
	datasets.list
	datasets.load

	tblish.evalWithTableVars
	tblish.examples.coplot
	tblish.examples.plot_pairs
	tblish.examples.SpDb
	tblish.sizeof2
	tblish.table.grpstats
	timezones
	todatetime
	vartype
	vecfun
	years

	9 Copying
	Package Copyright
	Manual Copyright

